2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Двойной ряд
Сообщение31.07.2022, 19:21 
Заслуженный участник


20/12/10
9108
Вот, на одном московском заборе случайно увидел: $$\sum_{(m,n)=1}\frac{1}{mn(m+n)}=?$$А что, довольно забавно, предлагаю развлечься. (Ответ там был, но без ответа интереснее.)

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение31.07.2022, 22:30 


18/05/15
733
Что такое $(m,n)$?

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение31.07.2022, 22:35 


25/07/21
10
ihq.pl в сообщении #1561592 писал(а):
Что такое $(m,n)$?


Наибольший общий делитель чисел $m и $n$.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение31.07.2022, 23:26 
Заслуженный участник


20/12/10
9108
Да, и числа $m$, $n$ считаются натуральными (целыми положительными).

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 10:46 
Заблокирован


16/04/18

1129
Интересный частный случай - эта двойная сумма по всем простым числам.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 13:05 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Из простых это подряд получается?
Вы числов подряд берёте? Нет, у меня подряд. Сложное...
А вот несколько членов для наглядности:
$$ \dfrac {1}{1\cdot 1\cdot 2} + \dfrac {1}{1\cdot 2\cdot 3} +  \dfrac {1}{2\cdot 1\cdot 3} +\dfrac {1}{1\cdot 3\cdot 4} +    \dfrac {1}{3\cdot 1\cdot 4} +\dfrac {1}{1\cdot 4\cdot 5}+  \dfrac {1}{4\cdot 1\cdot 5}+\dfrac {1}{2\cdot 3\cdot 5}+\dfrac {1}{3\cdot 2\cdot 5}+ ...$$
Правильно? Наверное, ряд сходится достаточно быстро и можно его на компьютере посчитать приближённо.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 13:19 
Заслуженный участник


18/09/21
1765
novichok2018
Почему простых?
Например 4 и 9 не простые, но взаимно простые ($gcd(4,9)=1$).

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 13:54 
Заслуженный участник


20/12/10
9108
gris в сообщении #1561625 писал(а):
Наверное, ряд сходится достаточно быстро
Да я бы не сказал: чтобы получить пару верных знаков, нужно сложить примерно миллион дробей.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 14:41 
Заслуженный участник


18/09/21
1765
Если это сумма по всем взаимно простым парам m и n, то надо просуммировать то же выражение по всем целым m и n от 1 и выше и поделить на $\sum_{k=1}^{\infty} k^{-3} = \zeta(3)$.

-- 01.08.2022, 15:07 --

Если переписать $\frac{1}{n(n+m)}=\frac{1}{n} - \frac{1}{n+m}$, тогда сумму по всем значениям можно переписать как $\sum_{m=1}^{\infty} \sum_{n=1}^m \frac{1}{n m^2}$.
Сумма $\sum_{n=1}^m \frac{1}{n} = H_m$, где $H_m$ - m-ное гармоническое число.
Вольфрам-альфа выдаёт $\sum_{m=1}^{\infty} \frac{H_m}{m^2} = 2 \zeta(3)$.
Значит ответ равен 2.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 15:31 
Заблокирован


16/04/18

1129
zykov - поэтому я и сказал, что сумма по простым - частный случай. На самом деле это не частный случай даже, а просто аналогичная задача.
Нам подсказали, что медленно сходится. Поэтому, наверное, нужно к условно сходящемуся знакочередующемуся ряду сводить.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 15:39 
Заслуженный участник


18/09/21
1765
novichok2018 в сообщении #1561633 писал(а):
что медленно сходится
Для суммы $\sum_{m=1}^{M} \sum_{n=1}^m \frac{1}{n m^2}$ хвост имеет порядок $\frac{\ln M}{M}$.
Не сказать чтобы сильно медленно.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 18:03 
Заблокирован


16/04/18

1129
Формулирую в качестве добавки:
найти сумму
$$
\sum_{p,q=2}^\infty \frac{1}{pq(p+q)},
$$
где суммирование идёт по всем простым числам $p,q$.
Как решать не знаю, ответа тоже не знаю.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 18:17 


26/08/11
2108
zykov в сообщении #1561630 писал(а):
Если переписать $\frac{1}{n(n+m)}=\frac{1}{n} - \frac{1}{n+m}$
А это точно правда?

А, вы исправили, ясно - опечаточка.
zykov в сообщении #1561630 писал(а):
$\sum_{m=1}^{\infty} \sum_{n=1}^m \frac{1}{n m^2}$.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 18:25 
Заслуженный участник


18/09/21
1765
Shadow в сообщении #1561640 писал(а):
А это точно правда?
Да, опечатка, спасибо.
Должно быть $\frac{m}{n(n+m)}=\frac{1}{n} - \frac{1}{n+m}$.
Дальше всё верно, т.к. из правильной версии выводилось.

 Профиль  
                  
 
 Re: Двойной ряд
Сообщение01.08.2022, 18:31 
Заслуженный участник


20/12/10
9108
zykov в сообщении #1561630 писал(а):
Вольфрам-альфа
выдаёт $\sum_{m=1}^{\infty} \frac{H_m}{m^2} = 2 \zeta(3)$.
Ну что, молодец Вольфрам. Также это равенство (в несколько ином виде) можно найти в "Интегралах и рядах" Прудникова и др.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group