Что не так? Не сходится ответ с задачей из учебника "Биология Физика Химия. Сборник задач и упражнений 7-9." 2-е издание 2021 Иванеско:
Цитата:
Два грузчика несут рулон линолеума длиной

(

) и массой

. Один грузчик держит рулон на расстоянии

от его конца, другой - на расстоянии

от противоположного конца. Найдите силу давления рулона, испытываемого каждым грузчиком.
Ответ:


Рулон без грузчиков "падает" в поле гравитации "вниз" без вращения. Чтобы описать такое движение можно рассматривать его как невесомый отрезок с приложенной силой тяжести к центру (масс). Эту силу можно переносить, раскладывать на конечное число других сил, приложенных к каким-то точкам отрезка, итд - это все эквивалентные модели, можно брать любую из них:

Подключаются силы от грузчиков, система приходит в состояние покоя, и можно выписывать уравнения моментов сил в любой точке отрезка - нигде ничего не вращается, и сумма моментов равна нулю. Для простоты - в точках приложения сил:


Или, например, можно перенести силы от грузчиков в центр, добавив пары, сохраняющие вращение. Тогда получим дополнительное уравнение равенства нулю равнодействующей силы (и нулевой момент относительно центра масс):


Собственно, можно как угодно делать. Дальше говорим, что по третьему закону Ньютона силы давлений на грузчиков равны численно

и

. Или нет? Заранее спасибо!