Пусть поток частиц нацелен точно на мишень и имеет поперечную площадь

.
В каких реалистических случаях может быть осмысленным обсуждение потока частиц с сечением

?
Допускается, что ядро окружено кубом со стороной

, и на его грань падает поток частиц.
При введении понятия эффективного сечения нет никакой необходимости рассматривать кубы с единичной стороной и т.д. (на этом этапе такой подход скорее мешает, а не помогает делу). Надо просто понять, что при определенных условиях (очень часто совершенно необременительных) разумным (полезным, естественным) является определение сечения

для любого процесса (реакции, рассеяния, ...) как отношения числа актов этого процесса, произошедших в единицу времени, к плотности потока падающих частиц

. Содержательная сторона поднятого вопроса тогда заключается в том, почему такое определение является разумным и каков его геометрический (наглядный) смысл в каких-нибудь простых случаях. Все эти моменты довольно подробно обсуждаются, например, в книге Валантэн. Субатомная физика: ядра и частицы (том 1,

).