4. Все четыре варианта запрещаются сравнением по модулю 27.
Это желательно проверить. Я просто делал таблицу в екселе и смотрел, какие остатки бывают.
Похоже всё правильно (строки без решений убрал):
Код:
{for(a=0,26, for(b=0,26,
x=a^4*b^6;
print1("a=",a,", b=",b,", q:");
for(q=0,26,
y=(2^3*q^6*(2*q^6+1)+1)%27;
if(x==y, print1(" ",q));
);
print;
))}
a=1, b=1, q: 0 3 6 9 12 15 18 21 24
a=2, b=1, q: 4 5 13 14 22 23
\\После замены + на - в скобке:
a=1, b=1, q: 0 3 6 9 12 15 18 21 24
\\После снижения степеней двойки и возврата + в скобке:
a=1, b=1, q: 0 3 6 9 12 15 18 21 24
\\После замены + на минус в скобке:
a=1, b=1, q: 0 1 3 6 8 9 10 12 15 17 18 19 21 24 26
Во всех вариантах отсутствуют решения с тройкой в любой степени в
![$a$ $a$](https://dxdy-01.korotkov.co.uk/f/4/4/b/44bc9d542a92714cac84e01cbbb7fd6182.png)
или
![$b$ $b$](https://dxdy-01.korotkov.co.uk/f/4/b/d/4bdc8d9bcfb35e1c9bfb51fc69687dfc82.png)
.
3. Теперь по модулю 27 запрещаются не все варианты, а только два: "а" и "г", другие два остаются "живыми".
Это тоже хорошо бы проверить.
Проверил, подтверждаю.