Косинус чётная функция, синус нечётная. Сумма чётных функций - чётная функция, сумма нечётных - нечётная. То есть разложение по синусам возможно только для нечётных функций, по косинусам - только для чётных.
Однако возможно использовать разложение, например, только по косинусам, делая из отрезка сигнала вдвое более длинный, но при этом чётный (приравнивая
). Это известно под названием "косинус-преобразование" и используется, например, в стандарте сжатия данных JPEG. Аналогично можно использовать
, получая нечётную функцию и соответственно синус-преобразование. Практически оно оказывается менее востребовано, чем косинус, поскольку у косинус-преобразования крайние точки "стыкуются", нет разрыва и убывание коэффициентов более быстрое (а для сжатия с потерями это очень ценно).
Ещё один подход к "унификации" даёт преобразование Хартли, где разложение ведётся по введённой им функции
При этом надо заметить, что сокращение номенклатуры используемых функций не сокращает числа коэффициентов, их столько же, сколько и в Фурье.