2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Оператор числа частиц
Сообщение29.10.2021, 10:18 
Заслуженный участник
Аватара пользователя


26/01/14
4856
Здравствуйте! Очень хотел бы узнать ответ на такой вопрос.

Как известно, в квантовой теории поля есть такой - оператор числа частиц.
Его собственными векторами являются многочастичные системы, в которых количество частиц точно определено.
Если рассматривать квантовые суперпозиции систем с разным количеством частиц, то они не будут собственными векторами оператора числа частиц.

Вопрос в том, состояния реальных физических систем (атомов, молекул, ... твёрдых тел?):
а) как правило, с астрономической точностью являются собственными векторами этого оператора?
б) как правило, с более-менее хорошей точностью являются собственными векторами этого оператора?
в) как правило, и близко не являются собственными векторами этого оператора, так что, вообще говоря, в реальных системах нельзя просто так взять и пересчитать частицы?

----------

Попытка разобраться.
Я слышал, что не существует устойчивых суперпозиций частиц с разной массой.
Как я понимаю, это из-за того, что частицы с разной массой по-разному взаимодействуют с окружением, движутся по разным траекториям, в результате запутываются с окружением и происходит декогеренция.
Наверное, точно так же не должно существовать устойчивых суперпозиций частиц с разным электрическим зарядом - в конце концов, вокруг нас существуют разные электромагнитные поля, и такие частицы тоже должны по-разному двигаться, что не позволит существовать их устойчивой суперпозиции.

Кажется, что к суперпозициям систем из разного количества частиц это тоже должно относиться, так что, скорее всего, для систем частиц, имеющих массу и/или заряд, верен вариант а)?

А что с системами фотонов например?

----------

И ещё вопрос: "считает" ли оператор числа частиц виртуальные частицы?
Если мы применим оператор числа фотонов к системе, состоящей из одного электрона (по идее, постоянно обменивающегося с окружением виртуальными фотонами) - то что получится?

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение29.10.2021, 10:39 


27/08/16
10453
Mikhail_K в сообщении #1536840 писал(а):
А что с системами фотонов например?
А для систем фотонов, наоборот, существует соотношение неопределённости между классической фазой электромагнитной волны и количеством фотонов. У строго определённого числа фотонов нет классической фазы.

-- 29.10.2021, 10:49 --

Mikhail_K в сообщении #1536840 писал(а):
И ещё вопрос: "считает" ли оператор числа частиц виртуальные частицы?
Оператор числа фотонов считает число частиц в одном квантовом состоянии. Например, в плоской волне со строго определённым волновым вектором. Про виртуальные частицы я достоверно не знаю, но мне кажется, что в КТП операторы рождения и уничтожения гораздо глубже связаны с виртуальными частицами, чем обычными. А если есть операторы рождения и уничтожения - то должен быть и оператор числа частиц. Который что-то считает.

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение30.10.2021, 15:41 
Заслуженный участник
Аватара пользователя


26/01/14
4856
realeugene
Спасибо.

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение25.11.2021, 20:57 
Заслуженный участник
Аватара пользователя


26/01/14
4856
Mikhail_K в сообщении #1536840 писал(а):
И ещё вопрос: "считает" ли оператор числа частиц виртуальные частицы?
Если мы применим оператор числа фотонов к системе, состоящей из одного электрона (по идее, постоянно обменивающегося с окружением виртуальными фотонами) - то что получится?
Может быть, всё-таки кто-то удовлетворит моё любопытство? Вот есть электростатическое поле, порождённое одиночным электроном. Что будет, если к нему применить оператор числа фотонов?

А если оператор числа глюонов (хотя бы какого-нибудь типа) к протону?
realeugene в сообщении #1536843 писал(а):
Оператор числа фотонов считает число частиц в одном квантовом состоянии.
То есть существуют разные операторы числа фотонов, каждый из которых считает фотоны только в своём квантовом состоянии?

Зависит ли тогда ответ на мой вопрос от того, какой именно оператор числа фотонов мы возьмём?

Справедливо ли сказанное для фермионов - ведь у них тоже должен быть оператор числа частиц, но, с другой стороны, они не бывают в одном квантовом состоянии?

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение25.11.2021, 21:24 
Заслуженный участник
Аватара пользователя


04/09/14
5288
ФТИ им. Иоффе СПб
Mikhail_K в сообщении #1536840 писал(а):
а) как правило, с астрономической точностью являются собственными векторами этого оператора?
б) как правило, с более-менее хорошей точностью являются собственными векторами этого оператора?
в) как правило, и близко не являются собственными векторами этого оператора, так что, вообще говоря, в реальных системах нельзя просто так взять и пересчитать частицы?
По-разному бывает. Лазерное излучение не является собственным состоянием оператора числа фотонов. Для частиц с сохраняющимся и квантованным зарядом (электронов) сохранение числа частиц - следствие закона сохранения заряда. Для барионов (протонов и нейтронов) и лептонов (электронов) сохраняется соответственно барионный и лептонный заряд. Поэтому в атомах можно сосчитать число протонов, нейтронов и электронов, а фотонов - вообще говоря, нельзя.

-- 25.11.2021, 22:08 --

Mikhail_K в сообщении #1536840 писал(а):
И ещё вопрос: "считает" ли оператор числа частиц виртуальные частицы?
Виртуальные частицы существуют в головах у теоретиков среди всякого прочего хлама. Кто же хлам считает?

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение25.11.2021, 23:55 
Заслуженный участник


20/04/10
1889
Обычно начинают с квантования свободного электромагнитного поля, то есть поля излучения без зарядов и токов. Уравнение поля это уравнения Максвелла, решение для вектора-потенциала раскладывают по плоским волнам, затем переходят от коэффициентов разложения к операторам, действующим на вектора в представлении чисел заполнения, задавая при этом коммутационные соотношения для операторов рождения и уничтожения фотонов с определенным набором квантовых чисел (поляризации и волнового вектора). Эту процедуру называют вторичное квантование. Таким образом, напряжённости электрического и магнитного полей становятся также операторами. Из классических выражений для энергии поля и импульса (с точностью до множителя это вектор Умова-Пойтинга) получают красивые ответы для соответствующих операторов. Фактически получается сумма независимых гармонических осцилляторов. По аналогии с осциллятором можно определить оператор числа фотонов определённого сорта. Суммируя все такие операторы, получим оператор полного числа фотонов. Хотя в полученном гамильтониане есть слагаемое, отвечающее за энергию нулевых колебаний, но оно не входит в определение оператора числа фотонов, тем самым, оператор считает реально наблюдаемые фотоны, создающие поле.

Затем переходят к вторичному квантованию свободного электронно-позитронного поля. Уравнение поля это уравнение Дирака. Коммутационные соотношения выбирают ля фермионов. В результате приходят к гамильтониану, в виде суммы всех операторов числа электронов определённого сорта (помноженных на соответствующие энергии) и операторов числа позитронов определённого сорта (также помноженных на энергии), ну и опять энергии нулевых колебаний.

Далее рассматривают электромагнитное поле, взаимодействующее с электронным. Здесь уже всё сложнее, надо записывать уравнение Дирака для электрона, взаимодействующего с э.м. полем, и уравнение Максвелла с электронным током, определяемым решением уравнения Дирака. Так как поля более не свободные, то оператор числа частиц не интеграл движения. Возможны процессы рождения электрон-позитронных пар, и число фотонов не сохраняется. Правда, если одно из полей слабое, то вероятности рождения-уничтожения экспоненциально малы.
Рождение пар в сильном электрическом поле

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение26.11.2021, 00:24 
Заслуженный участник
Аватара пользователя


26/01/14
4856
lel0lel в сообщении #1540579 писал(а):
Далее рассматривают электромагнитное поле, взаимодействующее с электронным. Здесь уже всё сложнее, надо записывать уравнение Дирака для электрона, взаимодействующего с э.м. полем, и уравнение Максвелла с электронным током, определяемым решением уравнения Дирака. Так как поля более не свободные, то оператор числа частиц не интеграл движения. Возможны процессы рождения электрон-позитронных пар, и число фотонов не сохраняется. Правда, если одно из полей слабое, то вероятности рождения-уничтожения экспоненциально малы.
Верно ли я понимаю, что из-за этого система "электрон+порождённое им электростатическое поле" не является в точности собственным состоянием оператора числа фотонов, равно как и собственным состоянием оператора числа электронов, но близка к собственному состоянию оператора числа фотонов (любого типа) с собственным значением $0$ и к собственному состоянию оператора числа электронов с собственным значением $1$?

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение26.11.2021, 02:16 
Заслуженный участник


20/04/10
1889
Mikhail_K в сообщении #1540580 писал(а):
электрон+порождённое им электростатическое поле

Чтобы получить статическое поле, нужно будет локализовать электрон, тут без внешнего поля не обойтись. Если он находится в основном состоянии атома водорода, то излучения не будет и на рождение пар энергии нет, свободно движущийся электрон тоже не излучает. Но как только создаём внешнее электрическое поле, энергия которого превышает пороговую энергию рождения электрон-позитронной пары, то этот процесс становится возможным.

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение26.11.2021, 02:17 
Заслуженный участник
Аватара пользователя


26/01/14
4856
lel0lel, amon
Спасибо.

 Профиль  
                  
 
 Re: Оператор числа частиц
Сообщение26.11.2021, 09:58 
Заслуженный участник


21/08/10
2462
Mikhail_K в сообщении #1536840 писал(а):
Вопрос в том, состояния реальных физических систем (атомов, молекул, ... твёрдых тел?):


В атомах число частиц определено. Атомы они маленькие. А вот в конденсированной среде.... Во всяком случае в сверхтекучей компоненте жидкого гелия число атомов не определно, является суперпозицией состояний с разным числом атомов. Впрочем, для макроскопического тела сам вопрос не очень-то осмысленный. Потому как сосчитать частицы действительно невозможно. И разность энергий в состоянии с N частицами и N+1 мала по сравнению с полной энергией макроскопического тела. Так что фиксированное там число частиц или суперпозиция -- да какая разница, на макросвойства это не влияет.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group