Но Вы, кажется, хотели перевыполнить план и доказать, что подгруппа данного порядка ровно одна.
Cейчас то это легко. Первоначально план был не такой.
Тут вот в чем дело. У Винберга параграф про циклические группы идет до гомоморфизмов. И поэтому приходится "вручную" доказывать кучу теорем типа "порядок порождающего элемента равен порядку группы", "группа конечна титтк конечен порядок порождающего элемента титтк в ней найдется равная пара степеней с различными показателями" и т.д. Я думаю таких теорем там на два десятка неберется. А вместо этого гораздо проще понять, что существует гомоморфизм из
на любую циклическую группу. Далее просто строим табличку из 2-ух столбцов: ядро тривиальное и ядро нетривиальное. В первом столбце получаем изоморфизм с
и автоматом весь набор теорем типа бесконечности группы, бесконечности порядка порождающего элемента, различности всех степеней и т.д. Во втором случае получаем изоморфизм с факторгруппой
по некоторому ядру. Ядро же подгруппа, а любая подгруппа
имеет вид
. А значит все теоремы тоже легко получаются. Я потому эту теорему о подгруппах легко доказал, потому что уже делал в точности такие же рассуждения, когда доказывал, что любая подгруппа
имеет вид
. Просто меня смутило, что у Винберга эта теорема (о цикличности любой подгруппы) идет в конце параграфа. Я не думал, что для нее ничего кроме определения не надо. А надо было просто ее в самом начале доказать, потом вывести из нее структуру любой подгруппы
и все. Вообще, не очень понятно, зачем циклические группы давать до основной теоремы о гомоморфизме, нелогично как-то.