2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Теория чисел 2.
Сообщение28.10.2021, 14:24 
Аватара пользователя


15/08/09
1465
МГУ
Решить уравнение в натуральных числах.

$$(1+n^k)^{l}=1+n^m$$, где $l>1$

(Оффтоп)

Можно ли интересно без бинома решить...

 Профиль  
                  
 
 Re: Теория чисел 2.
Сообщение28.10.2021, 14:51 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
$k=1,n=l=2,m=3.$

 Профиль  
                  
 
 Re: Теория чисел 2.
Сообщение28.10.2021, 14:57 
Аватара пользователя


15/08/09
1465
МГУ
Andrey A
да ответ верен

 Профиль  
                  
 
 Re: Теория чисел 2.
Сообщение28.10.2021, 15:07 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
maxmatem в сообщении #1536701 писал(а):
ответ
Он же и решение. Но элементарного доказательства, кажется, не существует, а Вы потребуете )

 Профиль  
                  
 
 Re: Теория чисел 2.
Сообщение28.10.2021, 15:28 
Аватара пользователя


15/08/09
1465
МГУ
Цитата:
Он же и решение. Но элементарного доказательства, кажется, не существует, а Вы потребуете )

Вы имеете в виду что вы просто подобрали ? или как ?

Ну элементарного не будет конечно, но в рамках программы матшкольника вполне себе можно решить
там соль в том чтобы доказать сначала что $l$-это степень двойки

 Профиль  
                  
 
 Re: Теория чисел 2.
Сообщение28.10.2021, 16:09 
Заслуженный участник
Аватара пользователя


21/11/12
1968
Санкт-Петербург
maxmatem в сообщении #1536716 писал(а):
... просто подобрали ?
Факт известный, но доказательств не приводится. Пара последовательных полнократных описывается уравнением $a^3x^2-b^3y^2=1$. Решений бесконечная серия, где уверенность, что $x$ однажды не окажется степенью $a$, $y$ — степенью $b$. Почему обязательно двойка? В задаче, понятно, взят более узкий контекст, интересно бы посмотреть.

 Профиль  
                  
 
 Re: Теория чисел 2.
Сообщение28.10.2021, 16:47 
Заслуженный участник


20/12/10
9148
Можно решить как с биномом, так и без. Если без бинома, то потребуется такая штука, как Lifting The Exponent (подъем показателя, некое вспомогательное утверждение, полезное в задачах с биномами).

Это задача с Московской олимпиады, так что элементарное решение, конечно, есть.

 Профиль  
                  
 
 Re: Теория чисел 2.
Сообщение28.10.2021, 16:56 
Аватара пользователя


15/08/09
1465
МГУ
nnosipov
Цитата:
Lifting The Exponent

спасибо, поизучаю.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 8 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group