2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Нечетность целой части
Сообщение25.10.2021, 20:02 
Заслуженный участник


20/04/10
1999
Все квадратичные иррациональности, удовлетворяющие условию задачи, определяются формулой:$$\frac{2 k+1+\sqrt{(2k+1)^2+8 m}}{2},$$ здесь $k, m$ -- натуральные числа, причём $m\leq k$. Наименьшая получается при $m=k=1$, она равна $\frac{3+\sqrt{17}}{2}$, что совпадает с
maxal в сообщении #25753 писал(а):
Поэтому для $u=\frac{3 + \sqrt{17}}{2}$ можно утверждать, что:
$[u^{2k}] = x_{2k} - 1$ -- четное число;
$[u^{2k+1}] = x_{2k+1}$ -- нечетное число.

Можно рассмотреть следующую задачу: найти такие $u>0$, что $\left \lceil{u^n}\right \rceil \equiv n\pmod{2}$ для всех $n$. В этом случае все квадратичные иррациональности, удовлетворяющие условию задачи, определяются формулой: $$k + \sqrt{k^2 + m}$$ здесь $k, m$ -- натуральные числа, причём $m\leq 2k$. Наименьшая получается при $m=k=1$, она равна $1+\sqrt{2}$.

 Профиль  
                  
 
 Re: Нечетность целой части
Сообщение26.10.2021, 00:31 
Заслуженный участник


20/04/10
1999
Семейство кубических иррациональностей, удовлетворяющих условию задачи, задаётся наибольшим корнем следующего уравнения: $$u^3-(2 k+1) u^2-(2 m-1) u+1=0,$$ здесь $k, m$ -- натуральные числа и $m\leq k$. При $m=k=1$ имеем $u^3-3u^2-u+1=0,$ что совпадает с уравнением приведённым на MO. Его наибольший корень является наименьшим среди наибольших корней данного семейства уравнений. Это семейство не даёт все решения в виде кубических иррациональностей.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group