2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Направление силы трения при качении
Сообщение07.10.2021, 22:27 


13/06/20
4
Изображение
Добрый вечер. В задаче рассматривается ступенчатый блок весом $G$ на шерховатой поверхности с коэффициентом трения $f$, на внутренний радиус которого намотана нить с грузом.
Просят найти, при каком угле $\alpha$ блок будет находиться в состоянии равновесия, без учёта силы трения качения. если заданы ещё $R, r$

1) Сила трения действующая на блок, которая возникает в точке соприкосновения блока с поверхностью направлена против "возможного" перемещения точки соприкосновения. Если бы груза $P$ не было, она очевидно была бы направлена наверх. Тогда в проекции на горизонталь:
$F_{тр}\cos\alpha-N\sin\alpha=0,$
$fN\cos\alpha>N\sin\alpha$,
$\tg\alpha<f$
2) Но если груз $P$ есть, то блок ведь может поехать наверх и тогда сила сила трения будет направлена вниз. В проекции на горизонталь:
$-F_{тр}\cos\alpha-N\sin\alpha=0,$
$-fN\cos\alpha>N\cos\alpha,$
$ \tg\alpha<-f$
Но это невозможно, значит сила трения направлена всегда вверх. Так что, получается сила трения всегда направлена вверх? Даже если сам блок "пытается" поехать наверх?

 Профиль  
                  
 
 Re: Направление силы трения при качении
Сообщение08.10.2021, 01:42 


17/10/16
4915
danok
О, это уже многократно обсуждалось. Дело в том, что сила трения "смотрит" не на скорость перемещения центра тяжести тела (или еще какой-нибудь другой его точки), а на скорость перемещения именно точек опоры тела, в которых происходит трение. Например, для бруска, который скользит по столу, все его точки перемещаются с одинаковой скоростью, так что у нас сложилось правило "сила трения направлена против перемещещения". Тут опущено "против перемещения точек опоры тела".

Колесо тоже ведет себя, как брусок, если его заблокировать и таскать по столу без вращения. Но когда оно катится без проскальзывания, то скорость точки его опоры всегда равна нулю (брусок так перемещаться не умеет). Так что направление силы трения в точке опоры колеса никак не связано с направлением качения колеса или с тем, куда оно "пытается" поехать, а определяется из баланса сил, как вы и сделали.

Тут еще нужно разделять "скорость точки контакта колеса и поверхности" ( "математическая" точка, скорость которой не равна нулю) и "скорость точки колеса в момент ее контакта с поверхностью" (вот эта скорость всегда равна нулю, когда колесо катится без проскальзывания). Нас интересует в этой задаче именно вторая скорость, а не первая (точнее, интересует тот факт, что эта вторая скорость всегда нулевая). Например, в этой задаче вы говорите о том, что "если бы не было груза $P$, сила трения очевидно была бы направлена вверх", объясняя это, как я понял, тем, что скорость точки контакта будет направлена вниз. А вот менее очевидный случай. Рассмотрите, скажем, это колесо без груза, которое толкнули в горку, и оно продолжает катиться по ней вверх с замедлением. Скорость точки контакта направлена вверх. Куда направлена сила трения в этом случае?

 Профиль  
                  
 
 Re: Направление силы трения при качении
Сообщение08.10.2021, 07:53 
Аватара пользователя


11/12/16
14039
уездный город Н
sergey zhukov в сообщении #1534242 писал(а):
Рассмотрите, скажем, это колесо без груза, которое толкнули в горку, и оно продолжает катиться по ней вверх с замедлением. Скорость точки контакта направлена вверх. Куда направлена сила трения в этом случае?


Если колесо катится без проскальзывания, то скорость точки контакта никуда не направлена.

danok
Что мы знаем про силу трения скольжения? А знаем мы вот что:
1. Модуль силы трения скольжения не превышает некого значения, определенного коэффициентом трения: $|F_f| \leqslant \mu N$ (1)
2. Сила трения направлена по касательной к поверхности.
3. Если в (1) неравенство строгое, то тело покоится. А значит равнодействующая должна быть равна нулю.
4. Если в (1) равенство, то тело может покоиться или двигаться без ускорения, если равнодействующая равна нулю; либо движется с ускорением, если равнодействующая неравна нулю.
5. Если тело движется, то сила трения направлена против движения.

Больше ничего про силу трения мы не знаем.
В том числе мы не знаем направление силы трения, если тело покоится..
а) В плоском случае сила трения может быть направлена или туда, или обратно. Раскрыв модуль в (1) мы получим:
$- \mu N \leqslant F_f \leqslant \mu N$ (2), где $F_f$ - проекция силы трения на ось, касательную к трущимся поверхностям.
б) В трехмерном случае всё ещё сложнее, сила трения может быть направлена куда угодно в плоскости, касательной к трущимся поверхностям.

Так как в Вашей задаче Вы не знаете направление силы трения, то Вы должны использовать неравенство (2), а не (1). И всех делов.

Для разминки можете решить более простую задачу: в поле тяжести на закрепленном клине лежит брусок. Между клином и бруском есть сила трения скольжения (с неким коэффициентом трения). Брусок тянут с некой силой вдоль поверхности клина. При какой "тянущей" силе брусок будет покоиться?

-- 08.10.2021, 08:12 --

UPD. Более строго:

EUgeneUS в сообщении #1534247 писал(а):
3. Если в (1) неравенство строгое, то тело покоится. А значит равнодействующая должна быть равна нулю.


Вообще говоря.
Если в (1) неравенство строгое, то проскальзывания нет, то есть точка тела не движется относительно точки поверхности в месте контакта. Это может быть в разных случаях:
а) тело покоится (относительно поверхности).
б) тело вращается вокруг точки контакта.

 Профиль  
                  
 
 Re: Направление силы трения при качении
Сообщение08.10.2021, 16:38 


13/06/20
4
EUgeneUS в сообщении #1534247 писал(а):
а) В плоском случае сила трения может быть направлена или туда, или обратно. Раскрыв модуль в (1) мы получим:
$- \mu N \leqslant F_f \leqslant \mu N$ (2), где $F_f$ - проекция силы трения на ось, касательную к трущимся поверхностям.

Я понял, я буду иметь
$(F_{f})_x\cos\alpha=N\sin\alpha$
$- \mu N \leqslant N\tg\alpha \leqslant \mu N$
$- \mu  \leqslant \tg\alpha \leqslant \mu $, что эквивалентно системе:
$\left\{
\begin{array}{rcl}
\tg\alpha&\geqslant&- \mu \quad(1) \\
\tg\alpha &\leqslant& \mu \quad(2)\\
\end{array}
\right.$
Но первое неравенство выполнено всегда, поэтому остаётся только второе.

 Профиль  
                  
 
 Re: Направление силы трения при качении
Сообщение08.10.2021, 17:26 
Заслуженный участник


20/04/10
1889
Моменты сил нужно тоже считать, сумма должна быть нулевой, чтобы тело покоилось.

 Профиль  
                  
 
 Re: Направление силы трения при качении
Сообщение08.10.2021, 17:40 
Аватара пользователя


11/12/16
14039
уездный город Н
danok в сообщении #1534284 писал(а):
Но первое неравенство выполнено всегда, поэтому остаётся только второе.

И Вы получили широко известный результат для бруска, лежащего на клине, который (брусок) не умеет вращаться.
Далее, как совершенно верно было отмечено:
lel0lel в сообщении #1534294 писал(а):
Моменты сил нужно тоже считать, сумма должна быть нулевой, чтобы тело покоилось.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group