Понятно, что при уровне значимости 0,05 делаем вывод, что выборки различаются. А если уровень значимости 0,01, то не различаются? При уровне значимости 0,05 свой результат я интерпретирую так: 0,03 < 0,05, т.е. выборки различаются, но с вероятностью не более 5% могут и не различаться. А при уровне значимости 0,01 результат: 0,03 > 0,01, значит, выборки не различаются, но с вероятностью не более 1% могут и различаться? Бред?
Это не так работает.
Есть нулевая гипотеза - например "выборки не различаются" (причём надо понять, по какому признаку различия ожидаются, различаются распределения, различаются матожидания и различаются дисперсии - это разные постановки, и список далеко не исчерпыващий).
Есть альтернативная гипотеза, что "различаются".
Сравниваем показатель, характеризующий различия. Какие-то различия есть, но они могут быть случайными. Поэтому находим, с какой вероятностью видимая нами или большая величина различий может появиться, если справедлива нулевая гипотеза. Условно выбранные, но общепринятые значения 5% и 1% (иногда выделяют ещё точку 10%, говоря, что статистически значимой разницы не выявили, но тенденция есть, так что есть резон попробовать набрать выборку побольше, авось выявим; но это "ориентир для себя", в публикациях обычно 5% или 1%). Можно сказать, что при 5% уровне мы примем случайные колебания за действительные различия в одном случае из 20, при 1% в одном из ста (т.е., чем меньше "уровень значимости", тем сильнее наш вывод).
Что касается Вашей задачи конкретно - то надо начинать не с выбора метода, а с выбора того, что, собственно, сравниваем. На какой вопрос отвечаем. А вопросов может быть много.
"Связан ли показатель индикатора со значением параметра?" - тут регрессия или корреляция работают.
"Как связаны шкалы индикатора и фактическое значение параметра?" - регрессия, возможно, и нелинейная.
"Индикатор и точный измеритель градуированы в одной шкале, есть ли систематическая ошибка (смещение)?" - оценка параметра сдвига и оценка значимости различий. Стьюдент, если верится в нормальность отклонений (не самих значений измеряемой величины, а отклонений измеренных значений от фактических), Манн-Уитни (ну, или скажу Вилкоксон, на самом деле надо не по названию метода смотреть, а по описанию, авторы учебников иногда названия меняют местами, благо разрабатывали непараметрические методы эти авторы в одно время) - если надежды на нормальность нет, а большие выбросы и т.п. вероятны.
"Систематическая ошибка убрана, что со случайной ошибкой?" - тесты для дисперсии и вообще мер разброса.
Я всё ещё не понял, что Вам нужно.
Спасибо за разъяснения. Попробую сформулировать ответ на вопрос «На какой вопрос отвечаем?». Я дополнил свою таблицу колонками с разностью показаний между индикаторами и вольтметром.
Вольтметр_Индикатор 1_Индикатор 2_ДельтаИ1_ДельтаИ2
5,0_______8,5_________4,5_________+3,5_______-0,5
5,5_______8,7_________5,9_________+3,7_______+0,4
Итак 200 строк.
Мне нужно сравнить между собой эти разности. Я рассчитал среднее и дисперсии разностей. Вот они:
___________ДельтаИ1_ДельтаИ2
Среднее_____0,6_______6,8
Дисперсия__10,9______35,9
По среднему я делаю вывод, что индикатор2 завышает показания значительно больше, чем индикатор1.
По дисперсии я делаю вывод, что индикатор2 имеет бОльший разброс, чем индикатор1.
Итого: показания индикаторов различаются.
Если я не прав, прошу поправить.
Но достаточно ли этого и нет ли одного критерия, чтобы показать то, что показания индикаторов различаются?