Мы же с вами вроде бы разбирали, как это работает.
Возьмем вашу схему и заменим все элементы просто квадратами с двумя выводами (двухполюсник). Т.к. это только кусок схемы, дорисуем оставшуюся систему в виде четвертого квадрата:
Предположим, нам ничего неизвестно об элементах. Только то, что у них по два вывода. Первое, что мы делаем - рисуем систему координат. Т.е. выбираем направление тока и напряжения (падения напряжения, т.е. стрелка напряжения всегда показывает направление, в котором потенциал уменьшается (от
к
)) в каждом элементе. Это можно делать совершенно произвольным образом. Точно так же мы поступаем, когда рисуем оси координат в задачах, например, механики. Мы говорим "Направим ось "х" вверх, тогда проекция силы тяжести на нее будет отрицательной" или "направим ось "х" вниз, тогда проекция силы тяжести на нее будет положительной". Здесь мы делаем тоже самое. Например, я так расставил направления токов и напряжений. Мы можете это сделать любым другим способом:
Теперь пишем уравнения Кирхгофа для суммы токов в местах соединения элементов (три уравнения) и суммы напряжений в контурах, образуемых элементами (два уравнения):
Тут все просто: выбрали, что направление тока в узел - с плюсом, и придерживаемся этого правила для данного узла (вообще, в каждом узле можем пользоваться произвольным правилом, что очевидно, если полученное уравнение умножить на -1. Например, в первом уравнении я считал, что выходящие из узла токи - с плюсом, а в третьем - что входящие в узел - с плюсом). Или выбрали, что направление напряжения по часовой стрелке в контуре - с плюсом, и придерживаемся этого правила для данного контура (вообще, в каждом контуре можем пользоваться произвольным правилом, что очевидно, если уравнение умножить на -1).
Обратите внимание, что уравнения Кирхгофа можно составить, вообще не зная, что за элементы скрываются за прямоугольниками. Уравнения Кирхгофа описывают только способ соединения любых элементов в схему.
Теперь пора вспомнить, что каждый двухполюсник - это конкретный элемент, который как-то связывает между собой свои ток и напряжение. В простейшем случае один из параметров может быть задан прямо (как у источника тока или источника напряжения). В более сложных случаях это может быть связь типа
(как для резистора, например) или
(как для для емкости и индуктивности, например) или еще какая-нибудь более сложная связь.
В нашем случае это:
Источник тока 1, для которого имеем просто
(с минусом, т.к. проекция тока источника на выбранную мной ось
отрицательна);
Источник напряжения 3, для которого просто
(с минусом, т.к. "+" у источника напряжения всегда там, куда указывает стрелка внутри него, т.е. падение напряжения на источнике направлено справа-налево, против моей оси
);
Резистор 2, для которого
(с плюсом, т.к. ток через резистор всегда течет в направлении падения напряжения, как я и нарисовал. Если бы я изначально нарисовал стрелки тока и напряжения здесь в разные стороны, то просто поставил бы здесь минус);
Внешняя система 4. Ее уравнения мы не знаем, поэтому оно нам просто должно быть дано по условию задачи.
Теперь осталось решить все эти уравнения совместно.