2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Задача о целой точке в выпуклом многограннике
Сообщение08.08.2021, 05:05 


12/05/07
593
г. Уфа
В пространстве $\mathbb R^n$ имеется целочисленная решётка (множество точек с целочисленными координатами). Элементарная ячейка такой решётки имеет объём $V=1$. Существуют ли такие два числа $V(n)$ и $D(n)$, что всякий выпуклый многогранник в $\mathbb R^n$ объёма $V\geqslant V(n)$ и диаметра $ d\leqslant D(n)$ содержит как минимум одну точку целочисленной решётки? Если да, известно ли данное утверждение и где можно посмотреть его доказательство?

 Профиль  
                  
 
 Re: Задача о целой точке в выпуклом многограннике
Сообщение08.08.2021, 08:56 
Заслуженный участник


25/02/11
1804
Имеется теорема Минковского. Там не многогранник, а выпуклое тело, но есть требование симметричности относительно нуля. Для плоскости можно попробовать вывести из теоремы Пика.

 Профиль  
                  
 
 Re: Задача о целой точке в выпуклом многограннике
Сообщение08.08.2021, 12:08 
Заслуженный участник


18/01/15
3343
Ruslan_Sharipov в сообщении #1528296 писал(а):
Существуют ли такие два числа $V(n)$ и $D(n)$, что всякий выпуклый многогранник в $\mathbb R^n$ объёма $V\geqslant V(n)$ и диаметра $ d\leqslant D(n)$ содержит как минимум одну точку целочисленной решётки?
Да, конечно. Это следует из того, что при некоторых $V'$ и $D'$ множество выпуклых многогранников диаметра $\leq D'$ и объема $\geq V'$ пусто.

 Профиль  
                  
 
 Re: Задача о целой точке в выпуклом многограннике
Сообщение09.08.2021, 03:35 


12/05/07
593
г. Уфа
vpb в сообщении #1528310 писал(а):
Да, конечно. Это следует из того, что при некоторых $V'$ и $D'$ множество выпуклых многогранников диаметра $\leq D'$ и объема $\geq V'$ пусто.

Ну это софизм. Может ли многогранник из пустого множества многогранников считаться содержащим как минимум одну точку целочисленной решётки? Если хотите избежать подобного толкования задачи, добавьте требование непустоты множества многогранников с заданными ограничениями на объём и диаметр. Хотя мне думается такое требование понимается имеющимся по умолчанию.

 Профиль  
                  
 
 Re: Задача о целой точке в выпуклом многограннике
Сообщение10.08.2021, 03:34 
Заслуженный участник
Аватара пользователя


08/11/11
5940
1) $n-1$-мерная площадь поверхности выпуклого многогранника в $\mathbb R^n$ диаметра $d$ не превышает $C_1(n) d^{n-1}$.

Доказательство: многогранник диаметра $d$ содержится в шаре радиуса $d$. Построим внешние цилиндры около каждой грани и посмотрим на их пересечения со сферой (границей шара). Поскольку каждое из этих пересечений проецируется в соответствующую грань, его площадь может быть только больше (и ясно, что они не пересекаются друг с другом). Другими словами, в качестве $C_1(n)$ можно взять площадь единичной сферы в $\mathbb R^n$.

2) Предположим, что многогранник диаметра $d$ в $\mathbb R^n$ не содержит шара радиуса $\varepsilon$. Тогда любая внутренняя точка многогранника содержится в $\varepsilon$-окрестности одной из граней, причём грань можно выбрать так, что проекция точки на гиперплоскость, содержащую эту грань, принадлежит этой грани (достаточно взять шар минимального радиуса, пересекающийся с границей многогранника, он будет касаться одной из граней, её и выбрать).

3) В предположениях пункта 2, суммируя по всем граням получаем, что объём многогранника не превосходит $C_1(n)d^{n-1}\varepsilon$. Следовательно, если назначить объём многогранника больше $C_1(n)d^{n-1}$ и диаметр меньше $d$, он будет содержать шар радиуса $1$. Само $d$ должно быть не очень маленьким, чтобы многогранник существовал. Например, куб диаметра $d$ имеет объём $(d/\sqrt{n})^n$, поэтому очень грубо достаточно удовлетворить $C_1(n)d^{n-1}\le (d/\sqrt{n})^n$. Обозначим через $V_0(n)$ и $D_0(n)$ какую-нибудь пару объём-диаметр с данным свойством. Тогда, из масштабирования, если взять $V(n)=R^n V_0(n)$, $D(n)=R^{n-1}D_0(n)$, то многогранник с $V\ge V(n)$ и $D\le D(n)$ будет существовать и любой такой многогранник будет содержать шар радиуса $R$. При $R>2\sqrt{n}$ этого достаточно, чтобы он содержал точку решётки (по крайней мере, если её интерпретировать как написано в исходном посте).

Где это написано -- не знаю, но мне кажется, что это простое упражнение, которое очевидно из общих соображений: многогранник большого диаметра и маленького объёма должен быть очень сплюснут, поэтому если объём не очень маленький, у него должна быть нетривиальная внутренность. На самом деле, я подозреваю, что если взять $V(n)$ равное объёму единичного шара, а $D(n)$ чуть меньше диаметра этого шара, то любой многогранник с такими данными должен быть очень близок к единичному шару и поэтому содержать шар радиуса чуть меньше единицы. Но это довольно муторно с точки зрения строгости.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: nimepe


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group