dewjjonПочему для однозначного описания состояния системы нужно задать только координаты и скорости (производные координат), но более высокие производные координат уже не нужны?
Потому, что в законе Ньютона
справа стоит ускорение (вторая производная координат). Если бы там стояла, скажем, пятая производная координат, то лагранжиан зависел бы от координат и четырех их первых производных. Соответственно, для однозначного описания состояния системы требовались бы координаты и четыре их первых производных.
Почему
, а не
? Вот тут как раз опыт показывает, что верно именно первое, а не второе.
Лагранжиан - это функция от координат и их производных. Допустим, мы взяли случайное положение элементов системы и задали им случайные скорости. Можем вычислить значение лагранжиана для этого случая. Взяли другое случайное положение элементов и задали им другие случайные скорости. Можем вычислить значение лагранжиана для этого случая.
Т.е. лагранжиан - это просто функция от всевозможных комбинаций координат и их производных, и эти координаты и их производные совсем не обязаны быть функцией времени. Мы их можем задавать произвольно и независимо.
Возьмем простейший случай, на котором обычно обьясняют смысл лагранжиана: свободное движение тела в поле силы тяжести. Допустим, тело переместилось из начальной точки пространства-времени
в конечную
. Вопрос: через какие точки пространства-времени оно прошло?
Решаем задачу так: задаем между этими точками любую кривую в пространстве-времени в виде
, где
- просто какой-то параметр. Для каждой точки
этой кривой у нас теперь есть координаты
и их производные
, а значит - есть и значение лагранжиана
(а функция лагранжиана у нас в данном случае - для движения точки в поле силы тяжести). Интегрируем этот лагранжиан вдоль всей кривой (в виде
). Если этот интеграл стационарен (т.е. при малом изменении траектрии он не меняется), то это и есть истиная кривая движения тела в пространстве-времени между заданными начальной и конечной точками. А если нет - значит мы неправильно взяли кривую. Нужно попробовать другую.
Что такое вообще "скорость в точке траектрии"? Возьмем кривую, выберем на ней точку и проведем касательную к кривой в этой точке. Интуитивно ясно, что такая касательная однозначно определена. Так же ясно, что если нам дана только одна эта точка кривой, а самой кривой нет, то касательную провести невозможно. Потому, что мы строим касательную
к кривой в точке, а не касательную к точке в точке. Поэтому для определения скорости в точке траектрии нужна сама эта траектрия, а не просто одна ее точка, в которой нужно определить скорость. Если нам дана только точка координат, про которую неизвестно, на какой траектрии она лежит, то мы ничего не можем сказать о скорости в этой точке. Скорость тогда нужно просто задать отдельно, как независимую переменную. Именно так мы и задаем координаты и скорости в лагранжиане.