Но нестационарность изменяет как раз те самые компоненты ТЭИ?
Э-ээ, не понял вопрос.
Вы сказали что за скачок ускорения отвечают компоненты напряжений ТЭИ (я кстати не понял почему игнорируются нормальные к поверхности, но пусть), но в пылевой оболочке они нулевые. Если только их не изменит факт нестационарности решения, т.е. зависимость от времени. Вот я и спросил они действительно зависят от производных по времени? Т.е. в конкретно эти компоненты ТЭИ входят не только напряжения, но и импульсы?
Но вообще это уже лишнее для меня углубление в детали, достаточно просто что напряжения в потенциале поля внутри оболочки учитываются.
realeugeneВроде не обязательно толстой, можно и тонкой, но массивной.
Кажется на поле внутри (не в толще) это не влияет.
Не должен, иначе замедление времени не будет сшиваться через тонкие слои толстой оболочки.
Разве не будет скачка на каждом тонком слое? А в пределе наверное просто гладкая функция.
Но это всё уже тонкости.
UPD. Давайте поясню с чего вдруг вопрос: если не ошибаюсь то в уравнения поля (почти) равноправно входят масса, импульс и напряжения, причём все только с плюсом (тёмную энергию забудем). И поле зависит от них всех. Для статичной массивной оболочки импульс нулевой, а напряжения нет. И значит поле должно быть "сильнее" чем просто от невзаимодействующей такой же массы (даже и снаружи тоже). В этом и вопрос, учтёна ли эта добавка.