2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Действие как фаза амплитуды вероятности
Сообщение04.03.2021, 14:18 


04/03/21
1
Помогите разобраться.
Читая учебник Феймана и Хибса "Интегралы по траекториям" на 43 стр. формула (2.15) вводиться действие как фаза амплитуды вероятности.
$\varphi[x(t)] = \operatorname{const} Exp[\frac{i}{h}S[x(t)]]$

Может кто-нибудь пояснить откуда такой вывод? Почему действие есть фаза?
Ранее в книге говорилось, что амплитуда вероятности это комплексное число и в принципе определение, что я написал, и есть комплексное число записанное в экспоненциальном виде. Но откуда делается вывод что фаза у этого числа есть $S/h$ , откуда это вытекает?

 Профиль  
                  
 
 Re: Действие как фаза амплитуды вероятности
Сообщение04.03.2021, 14:51 
Заслуженный участник
Аватара пользователя


04/09/14
5405
ФТИ им. Иоффе СПб
kolucik в сообщении #1507812 писал(а):
Почему действие есть фаза?
Считайте пока это постулатом и не заморачивайтесь. Если так написать, то результат сойдется с тем, что получается в стандартной квантовой механике, где постулируется уравнение Шредингера. Сам Фейнман (Файнман, если правильно транслитерировать с английского) писал, что он придумал свои интегралы после того, как сообразил что слово "corresponds to" в фразе Дирака: "The transition amplitude corresponds to $e^{iS}$ for the short times" означает "равна с точностью до констатнты".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 2 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: epros


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group