2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Многочлен от 28 переменных
Сообщение25.02.2021, 20:00 
Аватара пользователя


20/01/21
40
Есть многочлен
$(k+\beta)(\alpha - [wz+h+j-q]^\beta - [(gk+{\beta}g+k+\alpha)(h+j)+h-z]^\beta - [{\beta}n+p+q+z-e]^\beta - [{\beta^\beta}^\beta(k+\alpha)^{\alpha+\beta}(k+\beta)(n+\alpha)^\beta-\alpha-f^\beta]^\beta - [e^{\alpha+\beta}(e+\beta)(a+\alpha)^\beta+\alpha-o^\beta]^\beta - [(a^\beta - \alpha)y^\beta+\alpha-x^\beta]^\beta - [{\beta^\beta}^\beta{r^\beta}y^{\beta^\beta}(a^\beta-\alpha)+\alpha-u^\beta]^\beta - [((a+u^\beta(u^\beta-a))^\beta-\alpha)(n+\beta^{\beta}dy)^\beta+\alpha-(x+cu)^\beta]^\beta - [n+l+v-y]^\beta - [(a^\beta-\alpha)l^\beta+\alpha-m^\beta]^\beta - [ai+k+\alpha-l-i]^\beta - [p+l(a-n-\alpha)+b({\beta}an+{\beta}a-n^\beta-{\beta}n-\beta)-m]^\beta - [q+y(a-p-\alpha)+s({\beta}ap+{\beta}a-p^\beta-{\beta}p-\beta)-x]^\beta - [z+pl(a-p)+t({\beta}ap-p^\beta-\alpha)-pm]^\beta)$
о котором мало что известно, но уже известное вызывает глубочайший интерес: в частном случае $\alpha=1, \beta=2$ множество его положительных значений при неотрицательных значениях переменных совпадает с множеством простых чисел, и он называется многочлен Матиясевича. Возник резонный вопрос: могут ли другие частные случаи иметь не менее интересные свойства? Если да, то какие из них и почему кажутся вам наиболее перспективными для дальнейшего изучения?

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 06:51 
Аватара пользователя


15/11/06
2689
Москва Первомайская
Приведите, пожалуйста, хоть один набор значений переменных многочлена Матиясевича, чтобы получилось простое число. Я в свое время очень воодушевился, когда узнал про этот многочлен. Но не сумел найти ни одного подходящего набора, так до сих пор и нахожусь в недоумении.

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 08:31 
Заслуженный участник
Аватара пользователя


26/01/14
4891
NeVZleTeam
Откуда Вы этот "обобщённый многочлен Матиясевича" взяли?
Сами придумали?
Или кто-нибудь такие многочлены уже рассматривал?

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 08:55 


21/05/16
4292
Аделаида
geomath, post1505246.html#p1505246

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 10:58 
Аватара пользователя


20/01/21
40
Mikhail_K в сообщении #1506637 писал(а):
Откуда Вы этот "обобщённый многочлен Матиясевича" взяли?
Сами придумали?

Нет, не сам, увидел на школьной доске в седьмом классе. Предлагалось изучить частный случай $\alpha = -1, \beta= -2$ в качестве альтернативы одной из плашек.

(Оффтоп)

"На каникулы" из задачника Звавича (с оранжевой обложкой) давалось несколько десятков или сотен примеров, для решения которых требовалось шесть-восемь часов каждого дня школьных каникул - это называлось большой плашкой. Малая плашка отличалась тем, что задавалась во время четверти.

Mikhail_K в сообщении #1506637 писал(а):
кто-нибудь такие многочлены уже рассматривал?
Как-то ведь их получили, так что скорее всего да.

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 12:18 
Аватара пользователя


15/11/06
2689
Москва Первомайская
kotenok gav в сообщении #1506638 писал(а):

Файл по ссылке заблокирован антивирусом. Высылать мне лучше ничего не высылать, выпишите просто хоть какой-нибудь набор в явном виде, ради бога.

Помню, нашел такой набор в интернете. Но при ближайшем рассмотрении оказалось, что автор, когда переписывал этот длиннющий многочлен, 28 переменных все-таки, ошибся в одном месте и привел набор именно для этого своего ошибочного многочлена, а вовсе не для Матиясевича. :-(

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 12:24 


21/05/16
4292
Аделаида
Его выписать невозможно в явном виде.

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 12:32 
Аватара пользователя


15/11/06
2689
Москва Первомайская
Почему? Я так понял для себя, что выписать его можно, но в нем должны встречаться какие-то несусветно большие числа. Другого объяснения у меня нет.

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 12:35 


21/05/16
4292
Аделаида
Ну это я и имею в виду. Четыре из переменных будут длиной порядка в $10^{52}$ цифр.

 Профиль  
                  
 
 Re: Многочлен от 28 переменных
Сообщение26.02.2021, 12:46 
Аватара пользователя


15/11/06
2689
Москва Первомайская
Я неспроста вспомнил об ошибке. Я лично на месте Матиясевича не решился бы публиковать такой многочлен без проверки-примерки-прикидки хотя бы на одно простое число: а вдруг там ошибка?!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 10 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Divergence


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group