2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Идеально фокусирующая поверхность
Сообщение20.02.2021, 16:17 
Заслуженный участник
Аватара пользователя


18/09/14
5011
Найти форму преломляющей поверхности, которая излучение точечного источника света обратит в точности в параллельный пучок лучей. (Из обратимости хода световых лучей следует, что параллельный пучок света такая поверхность соберёт строго в одну точку - в приближении геометрической оптики, разумеется).
Считаем заданными оптическую плотность $n$ материала линзы и фокусное расстояние $f$ линзы. Под фокусным расстоянием в рамках данной задачи будем понимать расстояние от фокуса линзы до ближайшей точки преломляющей поверхности (её вершины), то есть, длину отрезка $OA$ - см. рис.
Линза подразумевается плоско-выпуклой, так что, если источник света помещён в главный фокус, то преломление света происходит лишь на одной (выпуклой) поверхности.


Вложения:
25.png
25.png [ 19.94 Кб | Просмотров: 0 ]
 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение20.02.2021, 16:45 


14/01/11
3036
Неужто получается гиперболоид инженера Гарина?

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение20.02.2021, 16:46 
Аватара пользователя


07/03/16

3167
Почему бы на экзамене не рассчитать сразу объективы Тессар и Планар, которые рассчитал и запатентовал Пауль Рудольф в начале прошлого века? Ведь они решали гораздо больше задач - отсутствие хроматических аберраций и геометрических искажений. :)

-- 20.02.2021, 16:47 --

Sender в сообщении #1505841 писал(а):
Неужто получается гиперболоид инженера Гарина?

У Гарина на самом деле был параболоид (если не врут).

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение20.02.2021, 16:56 
Заслуженный участник
Аватара пользователя


18/09/14
5011
Sender в сообщении #1505841 писал(а):
Неужто получается гиперболоид

Да. А его параметры указать сможете? :roll:
Emergency в сообщении #1505842 писал(а):
У Гарина на самом деле был параболоид (если не врут).

Врут. Алексей Толстой не ошибся. Нужен именно гиперболоид.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение20.02.2021, 17:22 
Заслуженный участник


27/04/09
28128
Так у него же не линза была, а параболическое зеркало. А «гиперболоид», как говорят, он выбрал специально потому что звучит более гиперболическо.

А в этой задаче я тоже заподозрил гиперболоид, но не успел ничего посчитать. :-(

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение20.02.2021, 17:32 
Заслуженный участник
Аватара пользователя


18/09/14
5011
arseniiv в сообщении #1505845 писал(а):
Так у него же не линза была, а параболическое зеркало.

Возможно. Плохо помню. Уверен лишь, что здесь нужен именно гиперболоид вращения (точнее, фрагмент одной из "половин" двуполостного гиперболоида вращения).
arseniiv в сообщении #1505845 писал(а):
Я тоже заподозрил гиперболоид, но не успел ничего посчитать.

Так ведь ответ, по сути, ещё не прозвучал :-) Попробуйте выяснить, чему равны эксцентриситет соответствующей гиперболы (задающей поверхность вращения) и её вещественная полуось. Ну, или назовите обе полуоси. Кому как удобно.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение20.02.2021, 17:47 


14/01/11
3036
Mihr в сообщении #1505844 писал(а):
Да. А его параметры указать сможете?

Какие-то некрасивые получаются выражения, наверное, ошибся где-то. Отношение полуосей $\sqrt{n^2-1}$ получается.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение20.02.2021, 17:53 
Заслуженный участник
Аватара пользователя


18/09/14
5011
Sender в сообщении #1505850 писал(а):
Отношение полуосей $\sqrt{n^2-1}$ получается.

У меня получилось так же. Посчитайте эксцентриситет, может, Ваше мнение насчёт "некрасивого" выражения изменится.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение21.02.2021, 00:04 


14/01/11
3036
Так, большая полуось $\frac{f}{n+1}$, эксцентриситет $n$. Действительно, довольно симпатично. :-) Кстати, идея очень простая: я вспомнил про принцип Ферма и предположил, что оптические пути всех лучей от фокуса до задней поверхности линзы одинаковы.

-- Вс фев 21, 2021 00:28:33 --

И лучи собираются в фокусе гиперболы. Безупречно.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение21.02.2021, 08:24 
Заслуженный участник
Аватара пользователя


18/09/14
5011
Sender в сообщении #1505871 писал(а):
большая полуось $\frac{f}{n+1}$, эксцентриситет $n$

Sender в сообщении #1505871 писал(а):
И лучи собираются в фокусе гиперболы.

У меня такой же результат.

-- 21.02.2021, 08:31 --

Стоит также отметить, что толщина линзы (на рисунке обозначена $h$) может быть произвольной. От выбора её значения преломляющее свойство линзы не зависит.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение21.02.2021, 08:33 
Аватара пользователя


07/03/16

3167
Асферическая оптика имеет место в некоторых объективах, но она сложнее в изготовлении и, соответственно, дороже сферической.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение21.02.2021, 08:59 
Заслуженный участник
Аватара пользователя


18/09/14
5011
Emergency, это ведь всего лишь задача, разминка для ума. А не предложение изготавливать "гиперболические линзы" :-)

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение21.02.2021, 23:58 


27/08/16
10195
Emergency в сообщении #1505875 писал(а):
Асферическая оптика имеет место в некоторых объективах, но она сложнее в изготовлении и, соответственно, дороже сферической.
Если линза пластиковая литая, как в каких-нибудь CD приводах, то не дороже. Попадался когда-то каталог каких-то стандартных асферических линз для лазерной техники какого-то японского производителя.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение22.02.2021, 09:46 
Аватара пользователя


07/03/16

3167
realeugene в сообщении #1505927 писал(а):
Если линза пластиковая литая...

Понятно, что пластмассовые линзы дешевле стеклянных, особенно лантановых.

 Профиль  
                  
 
 Re: Идеально фокусирующая поверхность
Сообщение22.02.2021, 13:43 
Заслуженный участник


28/12/12
7930
Надо в пару противоположную задачку: параллельный пучок падает на кривую поверхность и собирается в точку с другой стороны. Найти форму поверхности.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 24 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ignatovich


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group