2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В раздел Пургаторий будут перемещены спорные темы (преимущественно псевдонаучного характера), относительно которых администрация приняла решение о нецелесообразности продолжения дискуссии.
Причинами такого решения могут быть, в частности: безграмотность, бессодержательность или псевдонаучный характер темы, нарушение автором принципов ведения дискуссии, принятых на форуме.
Права на добавление сообщений имеют только Модераторы и Заслуженные участники форума.



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Красота математической формулы
Сообщение02.01.2021, 17:40 
Заслуженный участник


27/04/09
28128
kotenok gav в сообщении #1498662 писал(а):
Тогда уж $\left(\lim\limits_{x\to\infty}\left(1+\dfrac1x\right)^x\right)^{2\sqrt{-1}\arcsin1}+\sin^2\sqrt3+\cos^2\sqrt3=0^{0^0}$ :-) (по аналогии с известным примером усложнения $2+2=4$).

:mrgreen: :appl:

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение02.01.2021, 18:45 
Аватара пользователя


27/02/12
4215
Вообще это обсуждение приобретает порой странные оттенки.
Будто бы существует какой-то общепризнанный критерий красоты формулы.
Если кто-то считает формулу красивой, то это и есть главный
и единственный для этого человека критерий.

Вот взял первое попавшееся фото девушки
по запросу "красивая девушка".
Не уверен, что абсолютно все сочтут её красивой. Дело вкуса.
Не исключаю также, что кто-то из тех, кому эта девушка не кажется красивой,
изменит своё мнение на противоположное, когда ему сообщат,
что это знатная доярка. :D

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение02.01.2021, 19:09 
Заслуженный участник


27/04/09
28128
miflin в сообщении #1498672 писал(а):
Если кто-то считает формулу красивой, то это и есть главный
и единственный для этого человека критерий.
Часто красоту стараются объективизировать или сделать переносимой; в конце концов мы социальные существа и хотим делиться своим ощущением красоты, притом желательно с успехом, что уже не вопрос личной свободы. И по крайней мере интересна статистика, насколько часто и людям откуда кажется красивым что. Хотя статистическое любопытство одна тема на форуме вряд ли может удовлетворить хоть в какой-то степени, она может некоторому количеству людей показать какие вещи точно случаются: например то, что не универсально преклонение перед $e^{i\pi} + 1 = 0$ (моим примером).

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение02.01.2021, 20:11 
Заслуженный участник
Аватара пользователя


28/07/09
1238
miflin в сообщении #1498672 писал(а):
Вообще это обсуждение приобретает порой странные оттенки.
Будто бы существует какой-то общепризнанный критерий красоты формулы.
Если кто-то считает формулу красивой, то это и есть главный
и единственный для этого человека критерий.

Оскар Уальд писал(а):
Красота в глазах смотрящего

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение10.01.2021, 20:59 
Аватара пользователя


07/03/16

3167
miflin

(Оффтоп)

miflin в сообщении #1498672 писал(а):
Вот взял первое попавшееся фото девушки
по запросу "красивая девушка".
Не уверен, что абсолютно все сочтут её красивой. Дело вкуса.

А может быть девушка на самом деле красивая, но фотография неудачная? А если чуть подправить?
Изображение

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение11.01.2021, 15:32 
Аватара пользователя


27/02/12
4215
Emergency

(Оффтоп)

Emergency в сообщении #1500134 писал(а):
А может быть девушка на самом деле красивая, но фотография неудачная? А если чуть подправить?

Без комментариев.
Я отвечаю лишь потому, что Вы ко мне обратились. Невежливо было бы промолчать. :-)
Но это и всё. Чтобы не поощрять темы, подобные этой.
Боливар двоих не выдержит. :mrgreen:

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение12.01.2021, 09:07 
Аватара пользователя


15/11/06
2689
Москва Первомайская
Про число пи в Википедии написано, что оно иррационально и трансцендентно; возможно также, что оно невычислимое и неарифметическое. Тем не менее существует множество КРАСИВЫХ представлений этого числа в виде бесконечной суммы или бесконечного произведения с вполне себе РЕГУЛЯРНЫМ общим членом. Интересно, а существуют ли числа нерегулярные, не представимые в указанном виде (читай: некрасивые)?

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение12.01.2021, 10:11 
Заслуженный участник
Аватара пользователя


23/07/05
18035
Москва
geomath в сообщении #1500395 писал(а):
Про число пи в Википедии написано, что оно иррационально и трансцендентно; возможно также, что оно невычислимое и неарифметическое.
Сначала у меня глаза полезли на лоб, а потом в Википедию. И увидели там, что
Википедия в статье «Пи_(число)» писал(а):
$\pi$ является элементом кольца периодов (а значит, вычислимым и арифметическим числом)
А Вы чем смотрели?

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение12.01.2021, 14:30 
Аватара пользователя


15/11/06
2689
Москва Первомайская
Someone в сообщении #1500399 писал(а):
А Вы чем смотрели?
Да, сильно извиняюсь, спутал с $1/\pi$. Вы правы. А про "нерегулярность" что скажете? Про нее на самом деле у меня был вопрос.

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение12.01.2021, 14:36 
Заслуженный участник
Аватара пользователя


26/01/14
4933
geomath в сообщении #1500436 писал(а):
Да, сильно извиняюсь, спутал с $1/\pi$.
Отсюда видно, что Вы не понимаете смысл понятий "вычислимое" и "арифметическое" число. Конечно, $1/\pi$ - тоже вычислимое и, значит, арифметическое. Его можно вычислить со сколь угодно большой точностью точно так же, как и число $\pi$.

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение12.01.2021, 14:52 
Аватара пользователя


15/11/06
2689
Москва Первомайская
Mikhail_K в сообщении #1500439 писал(а):
Отсюда видно, что Вы не понимаете смысл понятий "вычислимое" и "арифметическое" число. Конечно, $1/\pi$ - тоже вычислимое и, значит, арифметическое. Его можно вычислить со сколь угодно большой точностью точно так же, как и число $\pi$.
Вот с чем я спутал: "Но неизвестно, принадлежит ли $1/\pi$ к кольцу периодов". Может, это я и не очень понимаю, но уж "вычислимое" в вашем смысле понимаю более чем.

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение17.01.2021, 17:29 
Заслуженный участник
Аватара пользователя


11/03/08
10188
Москва
arseniiv в сообщении #1498656 писал(а):
Это глупости, куда полезнее формула $\exp it = \cos t + i\sin t$


Ну вроде как спор о красоте, не о полезности? Как там говаривал Кола Брюньон
Цитата:
– Полезное искусство! Вот два несочетаемых слова, – сказал мой дурачок. – Прекрасно только бесполезное.
– Великие слова! – согласился я. – Истинная правда. Повсюду так, и в искусстве и в жизни. Нет ничего прекраснее, чем алмаз, принц, король, знатный вельможа или цветок.

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение17.01.2021, 18:00 
Аватара пользователя


07/03/16

3167
Евгений Машеров в сообщении #1501587 писал(а):
Как там говаривал Кола Брюньон
Цитата:
– Полезное искусство! Вот два несочетаемых слова, – сказал мой дурачок. – Прекрасно только бесполезное.


Неужели он считает женскую грудь бесполезной?

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение17.01.2021, 18:18 
Заслуженный участник


27/04/09
28128
Евгений Машеров в сообщении #1501587 писал(а):
Ну вроде как спор о красоте, не о полезности?
Ну для меня красота математических вещей почему-то постоянно коррелирует с их полезностью [в математике тоже, а часто и в основном — чем больше связей, объяснительной ценности, упрощения дел и т. д.]. :roll: Я понимаю красоту прозрачной осесимметричной вазы, но не понимаю красоты в $e^{i\pi} + 1 = 0$, и не понимаю как её там видят другие. Точнее, предполагаю, что это вызывается недостаточным знанием математики в большинстве случаев — тогда в отсутствие ориентиров конечно может быть много чего. Можно вообще в нумерологию пойти, пифагорейским путём начать почитать число $1 + 2 + 3 + 4$.

 Профиль  
                  
 
 Re: Красота математической формулы
Сообщение17.01.2021, 18:31 
Аватара пользователя


15/11/06
2689
Москва Первомайская
Математикам почему-то очень нравятся контрпримеры, извращения всякие. :-(

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 38 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: nimepe


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group