Формулы это все же не картины, поэтому мне кажется их красота, как и красота математики в целом, больше в том, когда они открывают нечто совершенно новое, проясняют неожиданные связи, помогают что-то понять и упростить. Есть известное выражение, что математика это когда сложное делается простым.
По этой же причине, красота, часто даже бОльшая, может быть не только в формулах, но и в новых понятиях, теоремах и структурах. Особенно в базовых понятиях и методах, которые оказываются универсальными.
Некоторое из того, что особенно запомнилось мне:
Теория множеств:1. Само понятие множества, в котором принципиально, что это не просто "некая совокупность", а переход от индивидуальных объектов (элементов) со своими свойствами, через выделение некоторых общих признаков в них (что и есть суть метода абстракции), в нечто, что теперь становится новым единым объектом. И теперь об этом объекте можно думать и оперировать им "целиком" как мы раньше оперировали более мелкими индивидуальными объектами.
2. Понятия классов эквивалентности и фактормножества, которые проходят практически через всю математику, обогащаясь при этом структурами в соответствующих множествах (группы, кольца и т.д.). Аналогично как и начальному понятия множества, это пример построения множества из отдельных объектов, но здесь сразу два шага (сначала классы эквивалентности как новые объекты, а потом следующий уровень и следующий объект - множество из них), и построение проходит по некоторым четким правилам, которые, как оказываются, встречаются и актуальны повсюду. Включая самые уж бытовые ситуации, когда люди говорят о "четных" и "нечетных" числах, даже не задумываясь, что оперируют здесь классами эквивалентности аналогично тому, как оперировали с обычными целыми числами. Также здесь встречается универсальная идея "забывания" части свойств индивидуальных объектов и выделение только наиболее важных (которая потом, в других вариантах, также проявляется в теории категорий, включая само понятие категории).
3. Диагональный метод Кантора и как он проявляется в разных доказательствах, например неравномощности множества и множества его подмножеств. (Это менее известный способ доказательства данной неравномощности, но он "конструктивнее" и ИМХО психологически понятнее и проще, чем стандартный способ "рассмотрим множество, состоящее из всех элементов, не принадлежащих своим образам...").
4. Теорема Кантора — Бернштейна. Наверное, единственное нетривиальное доказательство в элементарной теории множеств, и при этом очень красивое.
Алгебра, теория чисел, теория категорий:5. Некоторые из теорем теории групп, например теорема Кэлли и теорема Лагранжа. Очень простые, даже очевидные, но при этом очень глубокие. Это также хороший пример, когда введение "правильных" новых определений (например, смежных классов) часто делает практически очевидным утверждения и теоремы, которые, казалось бы, к ним не относились.
6. Приложения теорий групп и колец к элементарной теории чисел (снова теорема Лагранжа, идеалы и т.д.).
7. Понятия категории как переход на следующий уровень абстракции. Такие переходы - одно из самых важных в математике, поскольку не только позволяют узнать нечто принципиально новое, но и делают проще и понятнее предыдущие уровни абстракции, поскольку разные объекты и их свойства теперь часто описываются единым образом. А главное, начинаешь понимать что там "на самом деле" происходит.
8. А также начала теории категорий, особенно такие понятия как универсальное свойство (как нечто выглядит по-разному в разных структурах, но при этом имеет, по сути, один и тот универсальный смысл) и естественное преобразование (полезное даже в простых приложениях, например в линейной алгебре).
Анализ:9. Построение вещественных чисел через дедекиндовы сечения. Можно, конечно, все строить чисто аксиоматически, но только одно из "конструктивных" построений модели вещественных чисел позволяет понять почему аксиома полноты именно такая, а значит, с учетом ее принципиальной важности, более уверенно чувствовать себя в будущем. (Кроме дедекиндовых сечениий есть и другие построения, но сечения в свое время мне понравились больше всего.)
10. Построение практически всей теории непрерывных функций на основе всего одного свойства: полноты/непрерывности вещественных чисел. Также - несколько эквивалентных формулировок этого свойства, т.е. как некоторое свойство может проявляться и формулироваться сразу в нескольких вариантах.
11. Понятие предела по базе, как оно проявляется в разных ситуациях (последовательности, функции, интеграл Римана) и как позволяет проводить универсальные доказательства вроде бы совсем разных теорем.
12. Формула Тейлора и ряд Тейлора. Сначала кажется сложным, но все доказательство сводится к элементарной оценке остаточного члена по (тоже элементарной) теореме Лагранжа о конечном приращении.
13. Общая теорема/формула Стокса как обобщение и упрощение сразу нескольких формул, которые раньше казались несвязанными и некоторые довольно сложными: формула Ньютона — Лейбница, теорема Грина, формула Кельвина — Стокса, формула Остроградского — Гаусса.
И отдельно от "красоты" выделю такое понятие как "загадка" с главным представителем под логичным для него номером:
. Простые числа. (Которые настолько же "простые", как Тихий океан - "тихий".) Мне до сих пор удивительно как такие естественные и очевидные понятия как целые числа и операции над ними сразу приводят к сложнейшему понятию "простых чисел" с точки зрения их нахождения и распределения среди остальных чисел. Ты еще фактически ничего не придумал, спокойно сидел и никого не трогал, только стал складывать палочки, и вдруг сразу появляется нечто, распределенное между ними странным и удивительным образом.
Одно дело когда непонятны физика и природа в целом - мало ли что могло произойти во время Большого взрыва и после него, сколько есть Вселенных, что там находится на субквантовом уровне, что такое человеческое сознание... это все исключительно интересные вещи, и многое в них может быть совершенно непонятно, но ощущения странности и нелогичности здесь нет (а на крайний случай - да здравствует антропный принцип).
И всякие отрицательные, иррациональные и комплексные числа по сравнению с простыми - образец логичности и понятности. Что-то добавляем, расширяем, все аккуратно и логично растет наверх и в стороны.
Но как, откуда и почему нечто настолько странное как простые числа и их распределение вдруг и
само по себе появляется в целых числах?? Здесь уже не помогут квантовые случайности, неопределенности, мультивселенные, супердетерминизм, антропный принцип и другие способы объяснения почему наш мир именно такой. Это уж точно существует объективно и вне нас, но
почему оно такое?
Была когда-то мысль, что, возможно, дело в том, что базовых арифметических операций сложения, умножения и их известных производных и комбинаций недостаточно для понимания распределения простых чисел (а заодно, возможно, и других задач теории чисел) и нужны какие-то принципиально новые операции. Но назвать это конструктивной идеей сложно, поскольку непонятно куда двигаться. Можно, конечно, придумать что угодно, как и в целом можно придумать алгебраическую структуру с самыми экзотическими отношениями на ней, но непонятно что именно и как это будет полезно. Или может уже были какие-то попытки в этом направлении?
Но скорее всего, дело просто в том, что несмотря на то, что загадки распределения простых чисел и их свойств появляются сразу в арифметике, т.е. кажутся самыми базововыми и элементарными, это одни из самых глубоких проблем в математике, и их решение и настоящее понимание будут требовать еще пары столетий развития математики. Как минимум, сначала нужно будет доказать гипотезу Римана :) И при этом количество и глубина проработки требуемых разделов математики для понимания для всего этого будет намного больше, чем использовалось для доказательства Великой теоремы Ферма.