2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Решение трудного дифференциального уравнения
Сообщение19.12.2020, 02:37 
Заслуженный участник


09/05/12
25179
computer в сообщении #1497134 писал(а):
Чтобы завершить тему: докопался я, что уравнения такого рода называются Лейна-Эмдена. Аналитические решения существуют только для первой, пятой (и ещё нулевой) степени.
Да, если речь идет о сферически-симметричных решениях. Но вы в том, что вас интересуют именно они, пока так и не признались. :-)

А так, да, это уравнение Пуассона для самогравитирующего политропного шара с индексом политропы, равным показателю степени во втором члене. Соответственно, ими и занимались главным образом в астрофизических приложениях.

 Профиль  
                  
 
 Re: Решение трудного дифференциального уравнения
Сообщение19.12.2020, 18:44 
Заслуженный участник
Аватара пользователя


03/06/08
2360
МО
Если речь таки про ОДУ, то имею два соображения: 1) поискать в Зайцев, Полянин, 2) группа растяжений $x\frac{\partial}{\partial x} - u\frac{\partial}{\partial u}$ наследуется при переходе к сферически симметричному случаю, так что порядок уравнения, как минимум, снижается на единичку.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group