2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Дискретная динамика пифагоровых троек
Сообщение03.08.2018, 20:18 
Аватара пользователя


25/02/07

887
Симферополь
Условие.
На оси $x$ расположены две точки: точка $p$ имеет координату $0$, точка $q$ имеет координату $a$.
Обе точки одновременно начинают движение в положительном направлении оси $x$ со скоростями: точка $p$ со скоростью $V_l$, точка $q$ со скоростью $V_r$. При этом $V_l>V_r$ (точка $p$ догоняет точку $q$).

Вопрос.
Если все величины, включая время движения, являются натуральными числами, то при каких условиях сравняются пути пройденные каждой из точек?

Ответ.
Натуральные пути пройденные за натуральное время точками движущимися с натуральными скоростями сравняются при следующих условиях:
$a^2+b^2=c^2$, где
$a$ - координата точки $q$
НОД $(b,c-a)=t$ - время через которое выполнится условие $a^2+b^2=c^2$
$v_l=b/t$ - скорость точки $p$
$v_r=(c-a)/t$ - скорость точки $q$
$t'=m-n$ - дополнительное время из соотношений: $a=m^2-n^2,\ b=2mn,\ c=m^2+n^2$
$t+t'$ - время за которое сравняются пути пройденные обеими точками (точка $p$ догонит точку $q$).

Пожалуйста, проверьте.

 Профиль  
                  
 
 Re: Дискретная динамика пифагоровых троек
Сообщение03.08.2018, 20:30 
Заслуженный участник
Аватара пользователя


16/07/14
9202
Цюрих
serval в сообщении #1330447 писал(а):
время за которое сравняются пути пройденные обеими точками (точка $p$ догонит точку $q$)
Это два разных состояния. Первое достигается только в начальный момент времени (потом путь, пройденный точкой $p$ будет больше), второе достигается в момент $\frac{a}{V_r - V_l}$.
Не очень понятно, в чем собственно состоит утверждение, которое предлагается проверить - не хватает определений либо кванторов по многим переменным.

 Профиль  
                  
 
 Re: Дискретная динамика пифагоровых троек
Сообщение03.08.2018, 20:41 
Аватара пользователя


25/02/07

887
Симферополь
Совершенно верно. В момент когда точка $p$ догонит точку $q$ пройденный ей путь будет равен пути пройденному точкой $q$ плюс ее начальная координата $a$. Я был невнимателен.

Я прошу проверить действительно ли задача решается при указанных мной условиях. И исчерпывается ли решение ими.

 Профиль  
                  
 
 Re: Дискретная динамика пифагоровых троек
Сообщение03.08.2018, 20:57 
Заслуженный участник
Аватара пользователя


16/07/14
9202
Цюрих
Какие условия-то? В формулировке есть переменные $a, V_r, V_l$ [почему бы не назвать их $V_q$ и $V_p$?]. А дальше идут какие-то утверждения про еще $b$, $c$, $t$, $t^\prime$. Нужно написать, как они участвуют в выписанных уравнениях - утверждается, что получившаяся система разрешима? Или что?

В любом случае, даже из того что можно понять уже следует что решения точно не все: например, не покрыт случай $V_r = 1, V_l = 2, a = 2$.

 Профиль  
                  
 
 Re: Дискретная динамика пифагоровых троек
Сообщение08.10.2020, 18:20 
Аватара пользователя


25/02/07

887
Симферополь
Пифагоровым тройкам удалось придать физический смысл.

Пусть имеется примитивная пифагорова тройка

$a^2+b^2=c^2,\ a,b,c \in N$

Перепишем равенство в следующем виде

$(a+b-c)^2=2\ (c-a)(c-b)$

Сделав замену переменных

$a+b-c=vt$

$c-a=ut$

$c-b=l$

запишем его в новых переменных и, выполнив сокращение, получим

$v^2t=2\ lu$

откуда выразим $t$

$t=\displaystyle \frac {2\ lu}{v^2}$

Пояснить полученный результат можно следующим примером.

Пусть по реке, со скоростью её течения $\vec u$ , свободно дрейфует буй. Его обгоняет катер так, что в момент времени $t_0$ корма катера оказывается вровень с буем. Катер имеет длину $l$ и движется со скоростью $\vec v$ относительно буя. Тогда через время после обгона буя

$t=\displaystyle \frac {2\ lu}{v^2}$

величины

$a=l+vt$ - расстояние, пройденное катером относительно буя + длина катера

$b=(v+u)t$ - расстояние, пройденное катером относительно берега

$c=l+(v+u)t$ - расстояние, пройденное катером относительно берега + длина катера

где

$t=\text {НОД}\ (c-a,b)=\text {НОД}\ (c-a,a+b-c)=\text {НОД}\ (b,a+b-c)$

образуют примитивную пифагорову тройку $a^2+b^2=c^2$

P.S. В случае

$\tilde{a}^1+\tilde{b}^1=\tilde{c}^1$

переменные будут иметь вид

$\tilde{a}=l$

$\tilde{b}=vt$

$\tilde{c}=l+vt$

где слагаемые $a$ и $b$ имеют одинаковые единицы измерения, но различный смысл.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Stratim, YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group