2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Задача на диполь.
Сообщение14.09.2020, 10:35 


17/10/16
5066
StaticZero
Если диполь с любыми $q$ и $x$, но заданным моментом $qx$ (т.е. не обязательно точечный) находится в электрическом поле с равномерным градиентом, то работа по его перемещению и повороту в этом поле не зависит от $x$, т.е. остается такой же и для точечного диполя. Работа по перемещению диполя с конечным $x$ в неоднородном электрическом поле очевидна.

 Профиль  
                  
 
 Re: Задача на диполь.
Сообщение14.09.2020, 18:52 
Заслуженный участник
Аватара пользователя


22/06/12
2129
/dev/zero
sergey zhukov, а равномерный градиент это кто?

 Профиль  
                  
 
 Re: Задача на диполь.
Сообщение14.09.2020, 19:42 


17/10/16
5066
StaticZero
Одинаковый градиент по пространству.

 Профиль  
                  
 
 Re: Задача на диполь.
Сообщение14.09.2020, 20:31 
Заслуженный участник
Аватара пользователя


23/07/08
10910
Crna Gora
Я бы так выводил формулу для потенциальной энергии диполя. Возьмём сначала конечные заряды на конечном расстоянии. Пусть положительный заряд $+q$ находится в точке с координатами $x^k+\frac 1 2\ell^k$, а отрицательный $-q$ в точке $x^k-\frac 1 2\ell^k$. Потенциалы $\varphi^+, \varphi^-$ в этих точках равны
$\varphi^\pm=\varphi(x)\pm\frac 1 2\frac{\partial \varphi}{\partial x^k}\ell^k+o(\ell)$
а потенциальная энергия диполя (с точностью до слагаемых высших порядков малости) —
$U=q\varphi^+-q\varphi^-=q\frac{\partial \varphi}{\partial x^k}\ell^k=-\mathbf E\cdot\mathbf p$
Теперь устремим $\ell\to 0$ и $q\to\infty$, сохраняя $\mathbf p$. Члены высших порядков устремятся к нулю, и выражение станет точным.

 Профиль  
                  
 
 Re: Задача на диполь.
Сообщение14.09.2020, 21:07 


17/10/16
5066
svv
Да, свойства точечного диполя по моему проще всего понять именно как предел диполя конечного размера, когда $\ell\to 0$ и $q\to\infty$, при сохранении произведения $\ell q$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 20 ]  На страницу Пред.  1, 2

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group