Пардон, не связности, а смежности
Точное утверждение такое: назовем тройку
, такую что
транзитивной. Отношение без транзитивных троек есть отношение смежности для некоторого двудольного орграфа, в котором все ребра ориентированы из одной доли в другую.
(крайне глубокое утверждение, хороший конкурент доказательству формулы Ньютона-Лейбница через формулу Стокса)
Но все ли такие отношения (без троек-кандидатов) можно представить в виде связнного двудольного графа?
Связного - совсем не обязательно. Например пустое отношение.
Если не требовать связности - то да. Просто возьмем в левую долю все элементы, которые встречаются в отношении слева, а в правую - все остальные.
матрица с единицами только по диагонали
Для неё есть "транзитивные тройки".