ссылка на правила русского языка, как они здесь были приведены, сомнительна в отношении итальянских фамилий, заканчивающихся на безударную гласную.
Из книги Калакуцкая Л.П. Склонение фамилий и личных имён в русском литературном языке, 1984.
1. В 19 веке
A. (с. 29) фамилии, оканчивающиеся на безударное
-a, склонялись: маркиз Поза — нежели маркиза Позу. (Приведены многочисленные примеры из А.К. Толстого, Н.М. Карамзина, А.И. Тургенева.)
B. Фамилии, оканчивающиеся на ударное
a не склонялись за исключением Тальма.
C. Иностранные фамилии, оканчивающиеся на
о,
e, перестали склоняться после первой трети 19 века (с. 41).
2. Фамилии, заканчивающиеся на
a стали реже склоняться с 50-ых годов XX века. В некоторых публикациях фамилии Фонда, Рота, Де Сика склоняются, но чаще не склоняются.
Русская грамматика. Т.1, Наука, 1980 (гл. ред. Н.Ю. Шведова): «Правило о неизменности мужских имён и фамилий [иностранных] не распространяется на фамилии, оканчивающиеся на безударную гласную
-a».
Итак, фамилии, заканчивающиеся на безударное
-a с предшествующим согласным, за исключением возможно финских и японских, склоняются давно и всегда до 50-ых годов XX века. В русскоязычную литературу по математике фамилия Вольтерра пришла до 50 годов XX века. Поэтому гипотеза о неправильном ударении [и склонении] в связи с публикацией статьи во французском журнале мне кажется наиболее правдоподобной.
Неправильное ударение и склонение превратилось в традицию для математиков, физиков и биологов (достаточно посмотреть уважаемые учебники, монографии и энциклопедии, например, Математическую энциклопедию (гл. ред. Виноградов) Т1, 1977:
уравнение Вольтерра). И эту традицию длительное время не нарушали. В последнее время, возможно в связи с распространением Интернета, эта традиция всё чаще нарушается и в нематематических изданиях, и в математических.
ВОЛЬТЕ́РРА (Volterra) Вито (3.5.1860, Анкона – 11.10.1940, Рим), итал. математик, иностр. чл.-корр. Петерб. АН (1908), чл. Нац. академии деи Линчеи (1899), чл. Лондонского королевского об-ва (1910). По окончании ун-та в Пизе (1882) проф. в Турине и Риме (1900–31). Осн. труды по дифференциальным уравнениям с частными производными, интегральным (уравнения Вольтерры) и интегро-дифференциальным уравнениям, функциональному анализу и теории упругости, а также применениям математики в биологии.
Дифференциальные и интегральные уравнения : учебное пособие для студентов физико-технического факультета. – Петрозаводск : Изд- во ПетрГУ, 2014 (
Уравнения Вольтерры).
Миргород В.Ф. Исследование свойств интегральных моделей Вольтерры с сепарабельным ядром. // ВЕСТНИК ХНТУ № 3(54), 2015, с. 43–46.
Делаем поиск на
http://www.mathnet.ru/ на
Вольтерры и получаем:
1. Апарцин А. С., “Неклассические уравнения Вольтерры I рода в интегральных моделях развивающихся систем”, Электронное моделирование, 36:3 (2014), 3–14 elib
2. Г. А. Шишкин, “Исследование и решение задачи Коши для линейных интегро-дифференциальных уравнений Вольтерры с функциональным запаздыванием”, Дифференц. уравнения, 47:10 (2011), 1508–1512 zmath elib
3. Д. Н. Сидоров, “О семействах решений интегральных уравнений Вольтерры первого рода с разрывными ядрами”, Вестник ЮУрГУ. Серия: Математическое моделирование и программирование, 2012, № 18 (277), вып. 12, 44–52 mathnet zmath
4. Д. Н. Сидоров, Н. А. Сидоров, “Метод монотонных мажорант в теории нелинейных уравнений Вольтерры”, Изв. ИГУ, сер. математика, 4:1 (2011), 97–108 mathscinet isi
5. Джохадзе О. М., “О трехмерной обобщенной задаче Гурса для уравнения третьего порядка и связанные с ней общие двумерные интегральные уравнения Вольтерры первого рода”, Дифференциальные уравнения, 42:2 (2006), 385–394 mathnet elib
6. Жегалов В. И., “Решение уравнений Вольтерры с частными интегралами с помощью дифференциальных уравнений”, Дифференц. уравнения, 44:7 (2008), 874–882 mathscinet zmath elib
7. Искандаров С., Метод весовых и срезывающих функций и асимптотические свойства решений интегродифференциальных и интегральных уравнений типа Вольтерры, Илим, Бишкек, 2002
8. Магницкий Н. А., “Асимптотики решений интегральных уравнений Вольтерра первого рода”, Докл. АН СССР, 269:1 (1983), 29–32 mathnet mathscinet
9. Н. A. Сидоров, Д. Н. Сидоров, А. В. Красник, “О решении операторно-интегральных уравнений Вольтерры в нерегулярном случае методом последовательных приближений”, Дифференц. уравнения, 46:6 (2010), 874–882 mathscinet zmath
10. Н. А. Сидоров, А. В. Труфанов, Д. Н. Сидоров, “Существование и структура решений интегро-функциональных уравнений Вольтерры первого рода”, Изв. ИГУ, сер. математика, 1 (2007), 267–274 zmath isi
11. Н. А. Сидоров, Д. Н. Сидоров, А. В. Красник, “О решении операторно-интегральных уравнений Вольтерры в нерегулярном случае методом последовательных приближений”, Дифференц. уравнения, 40:6 (2010), 874–882 mathscinet
12. Н. А. Сидоров, Д. Н. Сидоров, А. В. Красник, “О решении операторно-интегральных уравнений Вольтерры в нерегулярном случае методом последовательных приближений”, Дифференц. уравнения, 46:6 (2010), 874–882 mathscinet zmath elib
13. Н. А. Сидоров, Д. Н. Сидоров, А. В. Красник, “О решении операторно-интегральных уравнений Вольтерры в нерегулярном случае методом последовательных приближений”, Дифференциальные уравнения, 40:6 (2010), 874–882
14. Нахушев А. М., “Обратные задачи для вырождающихся уравнений и интегральные уравнения Вольтерра третьего рода”, Дифференц. уравнения, 10:1 (1974), 100–111 mathnet zmath
15. Сидоров Д. Н., “О параметрических семействах решений интегральных уравнений Вольтерры I рода с кусочно-гладкими ядрами”, Дифферренц. уравнения, 49:2 (2013), 209–215 mathscinet zmath
16. Сидоров Н. А., Сидоров Д. Н., “Существование и построение обобщенных решений нелинейных интегральных уравнений Вольтерры первого рода”, Дифференц. уравнения, 42:9 (2006), 1243–1247 mathnet mathscinet zmath
17. Сидоров Н. А., Сидоров Д. Н., Красник А. В., “О решении операторно-интегральных уравнений Вольтерры в нерегулярном случае методом последовательных приближений”, Дифференц. уравнения, 40:6 (2010), 874–882 mathscinet
18. Сидоров Н. А., Сидоров Д. Н., Красник А. В., “О решении операторно-интегральных уравнений Вольтерры в нерегулярном случае методом последовательных приближений”, Дифференц. уравнения, 46:6 (2010), 874–882 mathscinet zmath
19. Сидоров Н. А., Труфанов А. В., Сидоров Д. Н., “Существование и структура решений интегро-функциональных уравнений Вольтерры первого рода”, Изв. ИГУ. Сер. математика, 2007, № 1, 267–274.