Архимед находил объемы любых тел, погружая их в воду и измеряя объем вытесненной жидкости.
Измерением и первичными представлениями о размерности можно получить только следующее:

,

,

,

, где

и

— длина окружности и площадь круга,

и

— площадь сферы и объем шара. А

с различными индексами — это какие-то числа, которые очень похожи друг на друга и «скорее всего» являются одним и тем же числом. Но чтобы что-то сказать более определенное, нужны какие-то дополнительные рассуждения.
видимо, они всё-таки именно интегрировали, только в неявной форме.
Да, скорее всего это так, и равенство

получалось рассмотрением разбиения круга на множество мелких треугольников с вершинами в центре и остальными вершинами на окружности. В пределе они основаниями составляли окружность а их суммарная площадь была

. Аналогично получается равенство

рассмотреием разбиения шара на множество пирамид. Но вот, чтобы получить равенство

надо было построить что-то посложнее. Ведь простое разбиение полусферы на криволинейные треугольники ничего не давало. Предположение, что маленькие криволинейные треугольники — это почти то же, что и прямолинейные слишком грубо и дает неверный результат.
Дело в том, что если описать вокруг сферы цилиндр и разбить всё на бесконечно тонкие слои плоскостями, перпендикулярными оси цилиндра, то площадь каждого слоя сферы будет такой же, что и соответствующего слоя цилиндра. Откуда всё и следует.
Вот, это как раз то построение, что и требовалось. Достаточно одного взгляда на два подобных треугольника, чтобы стало очевидно, что разница в радиусах
в точности компенсируется наклоном поверхности сферы к плоскости сечения. Здорово. Спасибо.
Жаль только, что дискуссия так быстро заканчивается. Вообще древние греки были забавны еще много чем. Например, они подозрительно свободно управлялись с коническими сечениями безо всякой аналитической геометрии.