2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 13:58 
Заслуженный участник


20/12/10
9062
Several students, not all my students, of course. To the problems: unfortunately, the variant with "an errata" is too complicated technically. At the moment, I don't know how it can be simplified. (I need to the so-called resultant technique, but this is no so good, I prefer more popular ideas.) Thus, the problem has "сырая формулировка" (sorry, I don't know how one can say this phrase in english).

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 14:10 
Аватара пользователя


13/10/07
755
Роман/София, България
For the initial system is valid the following geometric interpretation: "Это пересечение трёх поверхностей (двухмерных) в трехмерном пространстве. Решением может быть и не тройка чисел (то есть поверхности могут не пересекаться по одной-единственной точке."

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 16:32 
Аватара пользователя


13/10/07
755
Роман/София, България
Thanks to Rak so dna and Wolfram Alpha finally solved it: https://artofproblemsolving.com/communi ... 2p16511713 and collected more solutions you may like.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение18.07.2020, 16:35 
Заслуженный участник


09/05/12
25179
 ! 
ins- в сообщении #1474375 писал(а):
Thanks to @Rak so dna and Wolfram Alpha
ins-, click on his nickname to mention the participant, please. The result will be something like Rak so dna.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение22.07.2020, 14:11 
Заслуженный участник


20/12/10
9062
nnosipov в сообщении #1474354 писал(а):
At the moment, I don't know how it can be simplified.
Well, the following "corrupted" system can be proposed as an exam task with the "reasonable" answer: $$2+(y-z)^2-2x=17+(x-z)^2-8y=81+(y-x)^2-18z=0.$$The difference from the original system is that now we have the coefficients $2$ and $17$ instead of $1$ and $16$, correspondly. The problem can be formulated as: find the number of solutions over $\mathbb{F}_p$ for an arbitrary prime $p>3$. The required (expected) answer must be given explicitly: this means that the primes $p$ for which we have the same number of solutions must be desribed explicitly (for examle: those primes have the form ...).

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение22.07.2020, 21:35 
Аватара пользователя


13/10/07
755
Роман/София, България
It will be interesting to share the results from this exam.

I found more interesting systems. They'd be probably very easy for the most of users here, but I'll share them. It is one of the systems: topic141828.html

In the past I also created some "corrupted" systems. You can see some of them:

$x+xy+\frac{1}{xyz}=2$
$\frac{1}{y}+\frac{1}{yz}+\frac{1}{xyz}=3$
$\frac{1}{z}+\frac{1}{zx}+\frac{1}{xyz}=4$

$\frac{1}{x}+\frac{1}{y-z}=\frac{2}{3}$
$\frac{1}{y}+\frac{1}{z-x}=\frac{3}{4}$
$\frac{1}{z}+\frac{1}{x-y}=\frac{4}{5}$

$\frac{1}{x}+\frac{2}{y-z}=\frac{1}{2}$
$\frac{3}{y}+\frac{1}{z-x}=\frac{1}{3}$
$\frac{1}{z}+\frac{4}{x-y}=\frac{1}{4}$

The last two were modifications of:

$\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}$
$\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}$
$\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}$

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение22.07.2020, 22:12 
Заслуженный участник


20/12/10
9062
Generally speaking, the Groebner's basis technique can kill it easily, I think (and the exotic case of finite fields is assumed, too). So those examples can be useful for ... what? I see only one way: for the olympiad tasks where we can operate only elementary methods.

 Профиль  
                  
 
 Re: System of equations from an old magazine
Сообщение23.07.2020, 02:36 
Аватара пользователя


13/10/07
755
Роман/София, България
nnosipov в сообщении #1475288 писал(а):
So those examples can be useful for ... what? I see only one way: for the olympiad tasks where we can operate only elementary methods.

Yes, it is the idea. I have no dedicated math education. A long time ago I faced similar olympiad problems and I liked them. Sometimes as a hobby I solve and create problems.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group