2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Новый год в понедельник
Сообщение14.06.2020, 02:14 
Заслуженный участник


09/05/12
25179
В результате спора с коллегами возникла потребность в небольшом социологическом эксперименте. Кому не лень - попробуйте, пожалуйста, решить приведенную ниже задачу и напишите ответы вместе с примерным времем, которое у вас ушло на их получение.
Цитата:
В некотором году 1 января пришлось на понедельник. Найдите минимально возможное и максимально возможное количество лет, которое может пройти до следующего пришедшегося на понедельник 1 января.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 02:24 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
Вроде, 5 и 11. Несколько минут.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 02:30 
Заслуженный участник
Аватара пользователя


16/07/14
9202
Цюрих
Минимум - 5 лет ($n$-й и $n+5$-й). Максимум - 12 лет ($n$-й и $n+12$-й). Минут 15.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 03:30 
Заслуженный участник


20/08/14
11867
Россия, Москва
Минимум 5 лет ($n$-й и $n+5$-й). Максимум 12 лет ($n$-й и $n+12$-й), один высокосный можем исключить выбором даты. Минут 10 наверное.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 06:29 
Аватара пользователя


29/04/13
8307
Богородский
Минимум 5 лет. Максимум 12 лет. Около получаса.

-- 14.06.2020, 06:31 --

Pphantom в сообщении #1468770 писал(а):
В результате спора с коллегами возникла потребность в небольшом социологическом эксперименте.

А в чём был спор, Вы расскажете позже, после окончания эксперимента?

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 07:00 
Аватара пользователя


11/12/16
14035
уездный город Н
5 и 12
минут 10-15 размышлял, как решить быстрее. Плюс собственно решение чуть менее 5 минут.
Но нужно учитывать, что ответ был известен, а значить вероятность ошибиться - минимальна.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 07:19 
Аватара пользователя


07/01/15
1233
5 и 11. Во время чая. Да и то, забил на подсчет до високосных, просто вычел для минимума из $7$ два високосных, а для максимума выяснил, что третий високосный приходится на понедельник, потому вычел из $14$ три високосных.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 07:54 
Заслуженный участник
Аватара пользователя


18/09/14
5069
5 и 11, если ситуация сложилась в начале либо середине века (почти до самого его конца).
Возможно 5 и 12, если ситуация сложилась в предпоследнее десятилетие века, номер которого не делится на 4 нацело.
(Тоже больше думал, как сделать решение попроще. Всего, мне кажется, ушло около 10 минут.)

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 08:04 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Православно задача быстро решилась с ответом 5 и 11. С учётом первого подвоха получился ответ 5 и 12. А потом начинаются поиски следующих подвохов, в чём есть подозрение. Тут надо смотреть историю календарей и разные казусы с разными там пятидневками. Интересно и надолго(?).
Но это уже после полученных ответов. Если бы в опросе были бы скрыты ответы (как у VAL ), то было бы надёжнее :?:

Ещё мне показалось, что раз опрос социологический, то его цель спрятана и состоит не в выявлении насколько участники умеют в календари, а насколько они дисциплинированы и на конкретный вопрос отвечают чётко и без лишних слов, а не описывают свои переживания, не рассуждают о социологических опросах, не правят ответы по сто раз.

Ой, я на всякий случай сообщаю, что последний абзац написан в виде самоиронии и не имеет отношения к участникам, которые выше ответили.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 08:31 
Аватара пользователя


07/01/15
1233

(Оффтоп)

gris в сообщении #1468788 писал(а):
Если бы в опросе были бы скрыты ответы (как у VAL ), то было бы надёжнее :?:

Что-то постов про марафон не видно в последнее время. Или марафон идет, а я просто не знаю?

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 09:43 
Аватара пользователя


01/11/14
1939
Principality of Galilee
У меня ушло $2 $ часа (с перерывами на чай и кормление кошек).
Числа $5$ и $11 $ я получил быстро, за четверть часа. Но потом увидел посты mihaild и Dmitriy40 и стал соображать, откуда взялся ещё год.
Потом сообразил про невисокосные годы с двумя нулями на конце, и пришёл к выводу: если первый год цикла кончается на $96$, то действительно, получается $12 $ лет. Потом у меня ушло ещё четверть часа сообразить, что если последний год такого цикла кончается на $04$, то тоже получается $12 $ лет.
А потом ещё минут $10 $ прикидывал, а нельзя ли удлинить такой цикл сразу с двух сторон, чтобы получить $13 $ лет. Но увы... Низзя.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 10:29 
Заслуженный участник


20/08/14
11867
Россия, Москва
Наверное надо было сразу уточнить что речь идёт лишь о текущем григорианском календаре (если конечно это не очередной подвох ;-)). Иначе можно попытаться найти страну с датой смены календаря чтобы было и 13 лет ... Или вообще с другим календарём, но наличием в нём 1 января и понедельников. Но это уже долго. И не интересно.

(Про 10 минут)

Добавлю почему возможно так быстро сообразил: в программировании нередко появляются ситуации с "натягиванием" одной строки на другую и подсчётом или количества комбинаций или минимальных/максимальных длин таких строк. Тут вопрос аналогичен, надо лишь сообразить насколько можно сдвигать исходную строку с понедельниками 1 января относительно второй строки с реперами высокосных годов. Ну а потом увидел разнобой в вариантах (11 и 12) и вспомнил про подвох с невисокосными столетиями. Без такой подсказки не уверен что вспомнил бы быстро. И больше времени раздумывал нет ли ещё каких подвохов для удлинения максимума.

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 11:15 
Аватара пользователя


29/04/13
8307
Богородский
Я и не забывал, что, например, 2100-й не должен стать високосным.

Тут, кстати, поинтереснее можно вопрос задать. Если человек родился 29 февраля в понедельник, доведётся ли ему отпраздновать свой ДР в понедельник 29-го февраля другого года? Если да, то сколько раз в жизни?

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 11:43 
Заслуженный участник
Аватара пользователя


18/09/14
5069
Yadryara в сообщении #1468806 писал(а):
Если да, то сколько раз в жизни?

Вопрос некорректен, поскольку не указана продолжительность жизни данного человека :-) Вероятнее всего, не более четырёх раз (не считая первого дня жизни, когда ему ещё "ноль лет").

 Профиль  
                  
 
 Re: Новый год в понедельник
Сообщение14.06.2020, 13:12 


05/09/16
12108
У меня ответов два.
Ответ первый - 5 и 11. Это на пальцах, за 40 секунд.
Ответ второй 5 и 12. Это на калькуляторе, за 40 минут (писал скрипт на pari/gp который перебирает сколько лет пройдет между двумя теми же днями недели 1-го января начиная с 1900 года. Оказалось в 2091 к 5,6,11 добавляется 12, а в 2097 к ним добавляется 7, итого между двумя понедельниками может пройти 5,6,7,11 или 12 лет ).

Считал что углубляться в високосные года до нашей эры не стоит, поэтому брал только с 1900 года (не уверен, но вроде переход со старого стиля на новый в 1918 на это не повлиял).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 23 ]  На страницу 1, 2  След.

Модераторы: photon, whiterussian, Jnrty, Aer, Парджеттер, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Ruslan_Sharipov


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group