2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Непрерывный вариант суммы Гаусса
Сообщение29.05.2020, 09:58 
Заблокирован


16/04/18

1129
Задача в том, чтобы найти явное выражение для конечных сумм через специальные функции
$$
S_1(x)=\sum_{k=0}^n a^{x k^2}, S_2(x)=\sum_{k=0}^n a^{ix k^2}, a>0, x\in\mathbb{R}.
$$
Можно сразу положить $a=e$.
Это обобщения сумм для геометрической прогрессии, а при рациональных $x$ - знаменитые Суммы Гаусса. Те самые, которые он искал 11 лет, и "затратил на эту задачу больше лет, чем дней на остальные задачи".
Мне кажется, что когда-то видел формулу для этих конечных сумм для любых действительных $x$, кажется через тета-функции Якоби. Не могу теперь ни вспомнить, ни найти. Вольфрам и Прудников-Брычков-Маричев сразу не помогли, возможно не сумел найти или правильно спросить.

 Профиль  
                  
 
 Re: Непрерывный вариант суммы Гаусса
Сообщение29.05.2020, 10:23 
Заслуженный участник


20/12/10
9061
novichok2018 в сообщении #1465747 писал(а):
а при рациональных $x$ - знаменитые Суммы Гаусса
Точнее, при $a=e$ и $x=2\pi k/(n+1)$ вторая сумма $S_2(x)$ как раз будет суммой Гаусса.

 Профиль  
                  
 
 Re: Непрерывный вариант суммы Гаусса
Сообщение29.05.2020, 13:42 
Заблокирован


16/04/18

1129
nnosipov - спасибо за уточнение.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Someone


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group