Любопытно стало проверить законы сохранения энергии-импульса и момента импульса в метриках Керра и Керра-Ньюмана, следуя п. 96 ЛЛ2. Считать псевдотензор энергии-импулься гравитационного поля в
координатах Бойера-Линдквиста бессмысленно, т.к. они не переходят на бесконечности в лоренцевы. Поэтому сделаем сугубо пространственное преобразование метрики Керра-Ньюмана из координат Бойера-Линдквиста в декартовы, связь между которыми задана соотношениями:
Или если выразить через
:
здесь - один из положительных корней уравнения
, переходящий при
в
.
Полученная форма метрики Керра-Ньюмана в декартовых координатах очень громоздкая. Но ненулевые компоненты метрического тензора можно записать через
:
Юниты здесь геометрические,
- масса,
- момент импульса на единицу массы,
- заряд,
- теперь не координаты, а просто обозначения. Несмотря на то, что метрика записана через декартовы координаты, это не координаты Керра-Шильда. Хоть эта форма метрики Керра-Ньюмана и тривиальна, я ее не встречал в литературе, так что можете называть ее моей.
При
она переходит в метрику Керра, при
- в метрику Райсснера-Нордстрема, при
в метрику Шварцшильда.
Детерминант этой формы равен
, координаты на бесконечности переходят в лоренцевы. Любопытно, но ожидаемо, что расчет по формулам (96.16) и (96.17) ЛЛ2 для метрик Керра и Керра-Ньюмана дает одинаковый результат, несмотря на то, что первая - вакуумная метрика с нулевым тензором энергии-импульса, а вторая имеет ненулевой тензор энергии-импульса и кроме гравитационного поля содержит также электромагнитное поле.
В итоге единственная ненулевая компонента 4-импульса:
и две ненулевые компоненты 4-момента импульса:
Скрипт на Maple