2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Распределение потенциала в плазме
Сообщение09.04.2020, 12:21 


07/04/20
8
amon в сообщении #1452903 писал(а):
$\nabla\varphi(\infty)=0$ и непрерывность в нуле.

Совсем не подумал про то, что можно задать условие на обращение в ноль электрического поля. С ним как раз получилось определить константу интегрирования. Большое спасибо.
И с таким решением как раз будет выполняться условие квазинейтральности:
druggist в сообщении #1452869 писал(а):
Концентрация электронов в плюс бесконечности равна $n_0+n$ , в минус бесконечности, соответственно, $n_0$ (предельное значение концентрации при $x$ стремящемся к минус, плюс бесконечности). Как может быть по другому? Квазинейтральность, однако)

Всем еще раз спасибо.

 Профиль  
                  
 
 Posted automatically
Сообщение09.04.2020, 12:46 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Помогите решить / разобраться (Ф)» в форум «Карантин»
В таком виде решение скоро пропадет и его выкладка станет бесполезной. Наберите его (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы) и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение09.04.2020, 14:43 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (Ф)»

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу Пред.  1, 2

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group