Но скорее не из-за симметрии, а из-за равенства ЭДС двух источников
неее. Именно из-за симметрии.
Amw привел красивое формальное решение. Жаль только, что оно работает только в симметричном случае.
Прошу прощения за свое тугодумство,
Почему же "тугодумство". Интуитивно, Вы всё делаете верно. А интуиция - это неосознанный опыт. Вот и попробуем его осознать.
1. Итак есть потенциал (потенциал электрического поля), это такая функция, "на вход" которой подается точка в пространстве, а на выходе мы получаем число:
2. Разность потенциалов (напряжение), по определению:
Порядок букв в нижнем индексе важен:
3. Теперь добавим третью точку
, пусть известны напряжения
и
. Чему равно напряжение
? Это просто
Не забываем обращать внимание на порядок букв в нижнем индексе.
И это справедливо для любых трех точек, вообще для любых.
4. Поставим точку
на эквивалентной схеме между идеальным источник ЭДС и его внутренним сопротивлением.
- (по Вашему рисунку) это падение напряжения на внутреннем сопротивлении, которое найдем из "закона Ома для участка цепи":
- (по Вашему рисунку) это напряжение на идеальном источнике ЭДС, оно при любых условиях равно
Пользуясь (3) получаем
5. Кстати, второе правило Кирхгофа из этих простых соображений и выводится.