Однако, у меня возникают трудности с рассуждениями в случае если
- нечетно.
Интеграл режется на
частей, отличающихся поворотом на
радиан, и каждое слагаемое даёт векторный результат, так же отличающийся между собой.
Складываете результаты по методу многоугольника, и замечаете, что они образуют рёбра правильного
-угольника, то есть, замкнутой ломаной.
Это всё можно проще: симметрии переводят фигуру в себя, а результат интегрирования как-то меняют, если только не взять тождественную симметрию (но у нас тут всегда есть нетождественные). Но притом он должен остаться тем же, раз фигура осталась, ergo он нуль. Вот если бы результат был скаляром, мы бы ничего такого не получили; или если бы бивектором, нас бы не спасли повороты, а только отражения — меняющие ему знак. Вектору же достаточно и нетождественного поворота.
-- Пт апр 03, 2020 20:32:34 --Зато если бы мы чем-то таким интегрировательным работали теперь уже с хорошим многогранником, то если бы мы придумали результат бивектор, он тоже должен был бы быть равен нулю, потому что ему пришлось бы вращаться не только в своей плоскости. Тривектор однако снова разделили бы судьбу бивектора на плоскости. Осталось придумать. Можно брать звёздочку Ходжа от радиус-вектора, но это не интересно, надо что-то повеселее.