Например, для трехмерного пространства 3 гиперплоскости могут высечь куб
в трёхмерном пространстве они не гипер - а просто плоскости, и трёх - недостаточно, чтобы образовать куб, нужно 6 штук, это я могу представить. Если потом его дробить, так как я раньше описывал, срезая вершины, то каждая новая плоскость будет давать так же 2 новые вершины. Все вершины так и остаются трёхвалентными. И вообще, при срезании вершины любой валентности, новые вершины станут трёхвалентными. И грани, по большей части будут все треугольные. Ну в 3D графике так ведь и есть - все грани у каких угодно сложных фигур треугольные.
Да и не только куб, могут и более сложные фигуры высечь, но число вершин, приходящееся на одну плоскость будет меньше, чем в случае с тетраэдром. Я же рассматриваю случай с максимально возможным числом вершин.
Пространства более высокой размерности, в силу ряда причин, я не могу себе так хорошо представить. Всё это находится за гранью человеческого понимания. Остаётся лишь сетовать на какие то формальные закономерности.
Вот например, из теоремы Эйлера для выпуклого многогранника следует:
число граней G - это и есть число ограничений, а число рёбер R - равно половине произведения числа вершин и их валентности (которая равна размерности пространства Size).
Получаем:
это вообще кошмар какой то, хотя, для тетраэдра и для куба работает. Вообще, есть серьёзные подозрения, что теорема Эйлера справедлива лишь для трёхмерного пространства. Видимо, он так и не смог до конца постичь этой тайны.
Об этом косвенно свидетельствует и тот факт, что работы Эйлера пытались обобщить, в частности Пуанкаре, в википедии даже приводится какая то странная формула, но что конкретно она обобщает, я так к сожалению и не понял. В том смысле, что неясно как по ней вычислить количество вершин N-мерного многогранника.