Цепочку мудрецов можно сопоставить с отрезком
На самом деле нельзя: числа

и

равны, а цепочки

и

разные.
Непрерывные подотрезки образуют

-алгебру
Множество отрезков сигма-алгеброй не является.
Мерой являются обычные действия с отрезками: сложение, пересечение и т.д.
А теперь прочитайте, что такое мера. Действия с отрезками мерой быть никак не могут. Мера - это функция из сигма-алгебры в вещественные числа.
Но ладно, можно взять порожденную отрезками сигма-алгебру.
Вот только при такой сигма-алгебре множество "десятый мудрец угадал свой цвет" событием быть не обязано. И собственно при классической стратегии для этой задачи и не будет. Соответственно и говорить о вероятности того, что какой-то мудрец угадает свой цвет, нельзя.