2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Открытое множество в полном пространстве
Сообщение02.12.2019, 11:29 
Заслуженный участник


13/12/05
4520
1) Доказать, что открытое множество в полном метрическом пространстве гомеоморфно полному метрическому пространству.
2) То же самое для множества типа $G_\delta$ (пересечение счётного семейства открытых множеств).

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 12:32 
Заслуженный участник
Аватара пользователя


01/08/06
3054
Уфа
Не совсем понял. Разве определение открытого множества предполагает, например, связность? Или, может быть, подразумевается "гомеоморфно какому-то полному метрическому пространству" (не обязательно тому, из которого оно)?

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 13:09 
Аватара пользователя


31/08/17
2116
затер за бредовостью

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 13:13 
Заслуженный участник


13/12/05
4520
worm2 в сообщении #1428525 писал(а):
Не совсем понял. Разве определение открытого множества предполагает, например, связность? Или, может быть, подразумевается "гомеоморфно какому-то полному метрическому пространству" (не обязательно тому, из которого оно)?

Да, конечно, какому-то.

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 18:42 
Заслуженный участник


10/01/16
2315
1. Пусть $U$ - открытое в полном метрическом $(M,\rho)$, $\Gamma = \partial U$, $Q(x) = (\rho(x,\Gamma))^{-1}$. Тогда $Q$ - корректно определенная функция на $U$.
Положим $d(x,y) =\rho(x,y)+ \left\lvert Q(x)-Q(y)\right\rvert$. Ясно, что $d$- метрика на $U$, и отображение $x\mapsto x$ - гомеоморфизм $(U,\rho)$ на $(U,d)$. Ну, и, вроде, $(U,d)$ - полное....

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 18:46 
Заслуженный участник


13/12/05
4520
Все верно, только надо брать расстояние до $M\setminus U$, а не до границы $U$ (она может оказаться пустой).

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 18:52 
Заслуженный участник
Аватара пользователя


26/01/14
4642
Padawan в сообщении #1428599 писал(а):
Все верно, только надо брать расстояние до $M\setminus U$, а не до границы $U$ (она может оказаться пустой).
Ну, если граница $U$ пуста, то $U$ также и замкнутое множество, а поэтому и само по себе представляет собой полное метрическое пространство.

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 19:08 
Заслуженный участник


13/12/05
4520
Рассмотрим отображение $F\colon U\to M\times\mathbb R$, $F(x)=(x,Q(x))$. Нетрудно проверить, что это отображение является гомеоморфным вложением $U$ в $M\times\mathbb R$, и что $F(U)$ замкнуто в $M\times \mathbb R$. На произведении $M\times \mathbb R$ метрика $d((x,t),(y,s))=\rho(x,y)+|t-s|$ полна. Значит, $F(U)$ относительно этой метрики тоже полно. А это и есть метрика, указанная DeBill'ом.
Вторая задача решается аналогично, надо вложить $U$ в $M\times\mathbb R^{\aleph_0}$. Метрика тоже явно выписывается.

-- Пн дек 02, 2019 20:09:29 --

Mikhail_K
Согласен.

 Профиль  
                  
 
 Re: Открытое множество в полном пространстве
Сообщение02.12.2019, 19:26 
Заслуженный участник


10/01/16
2315
Padawan в сообщении #1428604 писал(а):
Рассмотрим отображение
...
Да, так много понятнее и прозрачнее...

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group