Предлагаю рассмотреть простой пример:
Кубик А подвешен в круговом потоке идеальной жидкости внутри квадратной ниши. Кубик подвешен так, что канал течения жидкости сверху уже, чем снизу (соответственно, давление снизу выше). Не сомневаюсь, что такой кубик действительно будет висеть в таком потоке. То же касается цилиндра:
В случае цилиндра мы можем рассмотреть цилиндр
поток жидкости, как новый цилиндр, т.е. заключить все это в цииндрическую невесомую оболочку и подвесить в потоке следующего уровня.Т.к. вес самой жидкости нам учитывать не нужно, то этот новый цилиндр будет иметь тот же вес, что и исходный, а площадь его будет больше. Чтобы он оставался в равновесии, разность давлений сверху и снизу должна стать меньше, т.е. скорость жидкости должна упасть. Точнее, расход жидкости второго потока будет тот же, что и у первого, но он течет по каналу бОльшего сечения:
Наращивая слои, можно получить, что на бесконечности давление и скорость в потоке стремятся к нулю (гидростатическое давление не учитываем. Можно переформулировать задачу в невесомости, задав не гравитационную силу воздейстивия на цилиндр).
Таким образом, круговой поток вокруг цилиндра распределяет его вес на бесконечную площадь где-то бесконечно внизу. Или же мы можем считать, что вес распределен по бесконечному океану жидкости, придавая ему бесконечно малое ускорение вниз. Назовем эту картинку эксцентричным обтеканием.
Что тут можно сказать о реактивной силе и получении/отдаче импульса? Думаю, что при желании можно рассуждать в этих понятиях, но в данном случае это вряд-ли имеет смысл. Особенно, если учесть, что в идеальной жидкости есть линии тока и определенная скорость вдоль них, но на самом деле нет определенного направления течения жидкости по этим линиям. Мы знаем, что глядя на картину линий тока любого потенциального течения, невозможно определить направление потока. Более того, невозможно даже определить, в одну или в противоположные стороны текут две соседние линии тока. Если взять любое потенциальное течение, то легко представить, что каждая четная линия тока течет вправо, а каждая нечетная - влево. Это создает трудности при попытке приписать такому потоку перенос импульса, т.к. он в среднем вообще никуда не течет и больше напоминает пластичное тело, рассеивающее точечное давление на весь свой объем. Это общий аргумент против переноса импульса в идеальной жидкости вообще. В ней нет определенного направления этого переноса, есть только линии тока.
Обтекание цилиндра параллельным потоком можно рассматривать так: на первом шаге по времени поток представляет собой решение Даламбера (взаимодействия цилиндра с потоком нет), на втором шаге - эксцентричное обтекание (возникает сила Магнуса). Эти шаги чередуются. Так проще понять, что в обоих случаях возникает одна и та же сила, поток ничего к ней не добавляет. Эта сила существует и без направленного потока, необходима только разница скоростей сверх и снизу, причем эти скорости не обязательно направлены в одну сторону, как на крыле. Если мы обязательно хотим пользоваться представлением о переносе импульса, то правильнее всего было бы говорить, что импульс бегает по кольцу течении вокруг крыла, а паралельный поток принимает и отдает его, когда проходит через крыло.
Трехмерный случай сложнее. Тут кинетическая энергия потока постоянно возрастает на величину работы двигателя, чего нет в плоском случае. Это вроде бы свидетельствует о том, что импульс потока не просто крутится вокруг крыла, но и остается в потоке за крылом, т.к. вихрь постояно сходит с крыла. Однако возможно, что за крылом остается только энергия в безимпульсных вихрях, т.к. на самом деле ничего невозможного в этом варианте, как мне теперь кажется, нет.
Похоже, что идеальную жидкость можно рассматривать, как силовое поле, в котором линии тока играют роль силовых линий. При этом можно забыть о скорости и направлении течения вдоль них и говорить только о том, что энергия силовой линии постоянна по ее длине. Это силовое поле, подобно электромагнитному, способно поддерживать на весу цилиндр или, скажем, самолет. И при этом нет необходимости привлекать представления о переносе импульса, ведь тут ничего никуда не течет.