fixfix
2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Джентильоны!!!
Сообщение20.11.2019, 16:48 
Аватара пользователя


08/10/09
981
Херсон
Предлагаю обсудить следующую, на мой взгляд, небезинтересную статью: http://www.scielo.br/pdf/rbef/v29n3/a13v29n3.pdf Если коротко, то принцип тождественности частиц подразумевает инвариантность волновой функции системы тождественных невзаимодействующих частиц не только к парным перестановкам двух любых частиц (все остальные "на своих местах") но и к перестановкам более общей структуры, имеющим местр в системах трех и более частиц и образующих группу перестановок. Так вот, при $n>2$ кроме двух единичных представлений группы, отвечающих симметричному и антисиммеричному состояниям, существую также и другие (многомерные) представления, отвечающие более экзотическим квантовым статистикам. Автор ставит перед читателями вопрос о том, почему такие статистики не реализуются в реальном мире, хотя симметрия не отрицает возможность их существования. Может, все дело в том, что любая перестановка может быть реализована как некая последовательность парных перестановок? Интересно узнать мнение уважаемого Munin и других участников форума.

 Профиль  
                  
 
 Re: Джентильоны!!!
Сообщение20.11.2019, 18:06 
Заслуженный участник
Аватара пользователя


30/01/06
72407
reterty в сообщении #1426924 писал(а):
Если коротко, то принцип тождественности частиц подразумевает инвариантность волновой функции системы тождественных невзаимодействующих частиц не только к парным перестановкам двух любых частиц (все остальные "на своих местах") но и к перестановкам более общей структуры, имеющим местр в системах трех и более частиц и образующих группу перестановок.

Так вроде, все перестановки генерируются парными. И парные принадлежат к любой группе перестановок.

reterty в сообщении #1426924 писал(а):
Так вот, при $n>2$ кроме двух единичных представлений группы, отвечающих симметричному и антисиммеричному состояниям, существую также и другие (многомерные) представления, отвечающие более экзотическим квантовым статистикам.

Ну и как выглядят эти новые представления на парных перестановках?

reterty в сообщении #1426924 писал(а):
Автор ставит перед читателями вопрос о том, почему такие статистики не реализуются в реальном мире, хотя симметрия не отрицает возможность их существования.

Если речь о фундаментальных частицах: "ну вот их нет почему-то". Аналогичный вопрос возникает для SUSY-частиц, которых тоже почему-то пока не найдено.
Если речь о квазичастицах в condmat: "надо поискать потщательней, где-нибудь да найдутся". С учётом того, что нашлись уже парастатистики и магнитные монополи, выглядит весьма вероятным.

 Профиль  
                  
 
 Re: Джентильоны!!!
Сообщение20.11.2019, 18:09 
Заслуженный участник


27/04/09
28128
reterty в сообщении #1426924 писал(а):
Автор ставит перед читателями вопрос о том, почему такие статистики не реализуются в реальном мире
Для пространства размерности выше 2 любая транспозиция вроде должна действовать как $\pm1$ (притом логично ожидать от частиц одного и того же поля, что либо все транспозиции будут давать плюс, либо все минус, и никаких смесей того и того, иначе мы сможем выделить какие-то классы частиц в поле и различить их хоть частично). Теперь по уже упомянутому вами факту разложимости любой перестановки в транспозиции мы определим однозначно и действие любой другой перестановки.

Правда есть возможность действовать не всей группой перестановок, а какой-нибудь поменьше. Вот можете проверить, останется ли там какая-то свобода (после того как мы возьмём действием всех транспозиций $\pm1$) или нет. Самая маленькая группа перестановок, не изоморфная $S_n$ — это $A_4$ (изоморфная группе вращений правильного тетраэдра), если пытаться подобрать пример. Но в той статье не предлагается действовать только частью перестановок, так что я не знаю, какой такой диковинный мир они предлагают описывать.

Физики поправят.

-- Ср ноя 20, 2019 20:52:02 --

Вот тут диаграммы Юнга поминаются вроде тем же образом как в статье, но не вижу чтобы там говорилось о частицах, которых может быть в одном состоянии не более $m\notin\{1,\infty\}$:
https://en.wikipedia.org/wiki/Parastatistics

 Профиль  
                  
 
 Re: Джентильоны!!!
Сообщение20.11.2019, 20:49 
Заслуженный участник


27/04/09
28128
Ну и вообще вот у нас значит есть внешняя и симметрическая алгебры, которые нам дают умножения на пространствах Фока для фермионов и бозонов. Про промежуточные алгебры, чтобы притом их размерность была $3^N, 4^N, \ldots$ при конечной размерности $N$ основного линейного пространства, не помню. Я вроде пытался разобраться, какая алгебра получится в случае обнуления тройных произведений векторов, $T(V) / \langle v\otimes v\otimes v\rangle$, но она вроде бесконечномерная выходит (ну, кроме случаев нульмерного и одномерного $V$).

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group