2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение15.10.2019, 19:57 
Аватара пользователя


11/06/12
10390
стихия.вздох.мюсли
vpb в сообщении #1420953 писал(а):
Берете окружность (обычную)
А это не будет вырожденным случаем, при котором можно потерять что-то существенное? Возможно, нужно всё же брать эллипс (вот тут уж точно любой, но отличный от окрухности).

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение15.10.2019, 20:00 
Заслуженный участник


18/01/15
3258
wrest в сообщении #1420961 писал(а):
какая-то могучая матричная магия

Да никакаяя особо могучая. На уровне "провести прямую через две точки", "найти точку пересечения двух прямых", "выяснить, лежит ли точка на прямой".
Aritaborian
Нет, не будет (все кривые второго порядка проективно эквивалентны).

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 10:27 


05/09/16
12183
vpb
До того как приступить к численным проверкам, хотелось бы понять теорему Паскаля.
Вот вы пишете:
vpb в сообщении #1420959 писал(а):
То, что через каждую вторичную точку проходит по крайней мере 4 вторичных прямых --- это-то точно (собственно, из теоремы Паскаля тотчас следует...).

Можете это пояснить?

Изображение

Касательно дальнейшего моделирования, предлагаю пронумеровать первичные точки как $T_1...T_6$, первичные прямые как $p_{ij},i<j\le 6$, вторичные точки как $D_{ijkl}; i<j;i<k;k<l;i,j,k,l\le 6$
Как показано на рисунке. Как нумеровать вторичные прямые даже не знаю.
Так вот, исходя из этих обозначений, какие тройки вторичных точек по теореме Паскаля будут лежать на одной прямой?

Из рисунка я вижу, что числа в индексах точек, через которые проходит вторичная прямая ($D_{1526};D_{1436};D_{2435}$), повторяются два раза, то есть две единицы, две двойки, две тройки и т.п. Случайность?

Может, тут многое решится как-то комбинаторно?

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 11:03 
Заслуженный участник
Аватара пользователя


06/10/08
6422
wrest в сообщении #1421052 писал(а):
Так вот, исходя из этих обозначений, какие тройки вторичных точек по теореме Паскаля будут лежать на одной прямой?
Как vpb уже сказал, нужно выбрать порядок точек шестиугольника. Если мы упорядочим исходные шесть точек каким-то способом $T_a, T_b, T_c, T_d, T_e, T_f$, то теорема Паскаля говорит, что $D_{abde}, D_{bcef}, D_{cdfa}$. Но надо учитывать, что циклические сдвиги и переворячивание порядка дают тот же шестиугольник (напр. $abcdef$, $bcdefa$ и $afedcb$ дадут один и тот же шестиугольник и одну и ту же тройку точек). Итого получится 60 прямых.
Точка $D_{abcd}$ будет лежать на 4 прямых, соответствующих порядкам $abxcdy$, $abycdx$, $abxdcy$, $abydcx$, где $x, y$ - две недостающие точки.

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 11:24 


05/09/16
12183
Xaositect в сообщении #1421059 писал(а):
Как vpb уже сказал, нужно выбрать порядок точек шестиугольника. Если мы упорядочим исходные шесть точек каким-то способом

Э... я выше упорядочил, можно ли в моих обозначениях написать? :oops:

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 11:33 
Заслуженный участник
Аватара пользователя


06/10/08
6422
wrest в сообщении #1421064 писал(а):
Э... я выше упорядочил, можно ли в моих обозначениях написать? :oops:
Не, в смысле для любого порядка получаем тройку точек на прямой. Если возьмем точки в порядке $T_1, T_2, T_3, T_4, T_5, T_6$, то по теореме Паскаля получим, что $D_{1245}, D_{2356}, D_{1634}$ лежат на одной прямой. Если возьмем порядок $T_1, T_4, T_6, T_3, T_2, T_5$, то та же теорема Паскаля дает тройку $D_{1423}, D_{2546}, D_{1536}$.

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 11:44 


05/09/16
12183
Xaositect
Гениально :!: :idea:
Теперь надо их все сгенерировать, это кажется проще чем рационально параметризовать точки а окружности, вычислять точки пересечения и т.п.

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 14:51 
Заслуженный участник


27/04/09
28128
Так там у вас лишнее будет наверно, если не считать пересечения. Кстати лучше в проективных координатах даже, тогда получите и бесконечно удалённые точки, и я тему не очень читал, но они могут быть недостающими(?)

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 16:07 


05/09/16
12183
Xaositect в сообщении #1421059 писал(а):
Но надо учитывать, что циклические сдвиги и переворячивание порядка дают тот же шестиугольник (напр. $abcdef$, $bcdefa$ и $afedcb$ дадут один и тот же шестиугольник и одну и ту же тройку точек). Итого получится 60 прямых.

А как правильно называются такие перестановки (где не учитываются циклы и обратные порядки)?
Как сгенерировать все перестановки кроме циклических, я знаю: генерируем все перестановки 5-ти чисел из 6 (например везде ставим впереди 1, и добавляем 5! перестановок оставшихся 23456). А вот как убрать (или не генерировать) обратные порядки?

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 16:11 
Заслуженный участник
Аватара пользователя


06/10/08
6422
Можно брать $1abcde$, где $a < e$.

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 16:55 


05/09/16
12183
Xaositect в сообщении #1421118 писал(а):
Можно брать $1abcde$, где $a < e$.

Да, в общем, прямое перечисление по заветам ув. Xaositect и ув. vpb подтвердило: вторичных прямых по теореме Паскаля 60 штук, через каждую вторичную точку проходят ровно 4 штуки вторичных прямых.
Однако ж, теперь надо упорно искать ошибку: откуда у меня при построении взялась вторичная точка, через которую прошло 5 вторичных прямых...

P.S. Ошибка нашлась. Пятую прямую я провел через 2, а не через 3 точки...

Итого, как говорится, все окончательно прояснилось.
Вторичных прямых 60, через каждую вторичную точку проходят ровно 4.
Паскаль устоял...

Теперь вопрос на засыпку: сколько существует точек пересечения трёх вторичных прямых?

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 22:17 
Заслуженный участник


18/01/15
3258
Возможно, это только вторичные точки. Точно не знаю...

 Профиль  
                  
 
 Re: Теорема Паскаля: сколько всего прямых?
Сообщение16.10.2019, 22:35 


05/09/16
12183
vpb в сообщении #1421161 писал(а):
Возможно, это только вторичные точки. Точно не знаю...

Во вторичных точках пересекается по 4 вторичных прямых - это мы (вернее, вы) выяснили.
А вот в некоторых "третичных" точках - пересекаются по три вторичных прямых.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 28 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
cron
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group