Добрый день!
Подоспели очередные глупые вопросы. Столкнулся с задачей, которой ранее не занимался: требуется найти пространственное и временное распределение а также спектр по энергиям для излучения мгновенного изотропного точечного источника имеющего спектр по энергиям

с учётом многократного рассеяния. Собственно понятно, что нужно решать уравнение Больцмана (

- дифференциальная по углам и энергии плотность потока в момент времени

)
![$$\frac{1}{v}\frac{\partial }{{\partial t}}\Phi ({\bf{r}},{\bf{\Omega }},E,t) + {\bf{\Omega }}\nabla \Phi + [{\chi _s}(E) + {\chi _a}(E)]\Phi - \int {d{\bf{\Omega }}'\int {dE'{\chi _s}({\bf{\Omega }}',{\bf{\Omega }},E',E)} \Phi (r,{\bf{\Omega }}',E',t)} = S({\bf{r}},{\bf{\Omega }},E,t)$$ $$\frac{1}{v}\frac{\partial }{{\partial t}}\Phi ({\bf{r}},{\bf{\Omega }},E,t) + {\bf{\Omega }}\nabla \Phi + [{\chi _s}(E) + {\chi _a}(E)]\Phi - \int {d{\bf{\Omega }}'\int {dE'{\chi _s}({\bf{\Omega }}',{\bf{\Omega }},E',E)} \Phi (r,{\bf{\Omega }}',E',t)} = S({\bf{r}},{\bf{\Omega }},E,t)$$](https://dxdy-04.korotkov.co.uk/f/b/0/2/b02e0370b57959403823a21825c67ff582.png)
Здесь

- дифференциальное по углам и энергиям сечение рассеяния,

и

- сечение фотопоглощения и рассеяния соотв.
Рассмотрим интеграл столкновений. Рассеяние в системе состоит из релеевского и комптоновского рассеяний, для релеевского рассеяния энергия не меняется, поэтому дважды дифференциальное сечение можно представить как дифференциальное по углу

(здесь и далее

- косинус угла рассеяния). Для комптоновского рассеяния угол рассеяния связан с изменением энергии, поэтому аналогично мы можем перейти к дифференциальному по энергии сечению рассеяния

, что с учётом сферической симметрии даёт нам
![$$\frac{1}{c}\frac{\partial }{{\partial t}}\Phi (r,\mu ,E,t) + \mu \frac{{\partial \Phi }}{{\partial r}} + \frac{{1 - {\mu ^2}}}{r}\frac{{\partial \Phi }}{{\partial \mu }} + [{\chi _{sc}}(E) + {\chi _{ab}}(E)]\Phi - \operatorname{St} (\Phi ) = {S_0}f(E)\frac{{\delta (r)}}{{4\pi {r^2}}}$$ $$\frac{1}{c}\frac{\partial }{{\partial t}}\Phi (r,\mu ,E,t) + \mu \frac{{\partial \Phi }}{{\partial r}} + \frac{{1 - {\mu ^2}}}{r}\frac{{\partial \Phi }}{{\partial \mu }} + [{\chi _{sc}}(E) + {\chi _{ab}}(E)]\Phi - \operatorname{St} (\Phi ) = {S_0}f(E)\frac{{\delta (r)}}{{4\pi {r^2}}}$$](https://dxdy-04.korotkov.co.uk/f/3/5/7/35729746c2c682eac75e27e1230bf13e82.png)
где

и

Собственно вопрос что дальше с этим делать. Уравнение нестационарное, и даже если применить преобразование Лапласа потом это не разгребешь. В целом понятно, что нужно считать численно, но мне не очень понятно как именно (особенно в части связанной с интегралом столкновений, а также учитывая множество переменных). Знаю, что такое считают методом Монте-Карло, но тут мне немного неясно, что делать с комптоновским рассеянием - учитывая что угол рассеяния и изменение энергии связаны, как именно мы должны разыгрывать такое взаимодействие (напр. разыгрывать по углу и затем вычислять новую энергию?). К тому же алгоритм явно не является наивным (с простым розыгрышем траекторий) и есть много хитростей. В общем есть ли литература где очень подробно выписаны методы решения таких нестационарных задач (я копался в Линейной теории переноса Кейза и Цвайфеля, теории переноса Дэвисона, но там в основном рассмотрены стационарные задачи и нет подробного описания алгоритмов). В статьях же на подобную тематику никаких подробностей вычислений я не нашел.