Добрый день!
Подоспели очередные глупые вопросы. Столкнулся с задачей, которой ранее не занимался: требуется найти пространственное и временное распределение а также спектр по энергиям для излучения мгновенного изотропного точечного источника имеющего спектр по энергиям
с учётом многократного рассеяния. Собственно понятно, что нужно решать уравнение Больцмана (
- дифференциальная по углам и энергии плотность потока в момент времени
)
Здесь
- дифференциальное по углам и энергиям сечение рассеяния,
и
- сечение фотопоглощения и рассеяния соотв.
Рассмотрим интеграл столкновений. Рассеяние в системе состоит из релеевского и комптоновского рассеяний, для релеевского рассеяния энергия не меняется, поэтому дважды дифференциальное сечение можно представить как дифференциальное по углу
(здесь и далее
- косинус угла рассеяния). Для комптоновского рассеяния угол рассеяния связан с изменением энергии, поэтому аналогично мы можем перейти к дифференциальному по энергии сечению рассеяния
, что с учётом сферической симметрии даёт нам
где
и
Собственно вопрос что дальше с этим делать. Уравнение нестационарное, и даже если применить преобразование Лапласа потом это не разгребешь. В целом понятно, что нужно считать численно, но мне не очень понятно как именно (особенно в части связанной с интегралом столкновений, а также учитывая множество переменных). Знаю, что такое считают методом Монте-Карло, но тут мне немного неясно, что делать с комптоновским рассеянием - учитывая что угол рассеяния и изменение энергии связаны, как именно мы должны разыгрывать такое взаимодействие (напр. разыгрывать по углу и затем вычислять новую энергию?). К тому же алгоритм явно не является наивным (с простым розыгрышем траекторий) и есть много хитростей. В общем есть ли литература где очень подробно выписаны методы решения таких нестационарных задач (я копался в Линейной теории переноса Кейза и Цвайфеля, теории переноса Дэвисона, но там в основном рассмотрены стационарные задачи и нет подробного описания алгоритмов). В статьях же на подобную тематику никаких подробностей вычислений я не нашел.