Лучше рассматривать его как определение расстояний между точками и не выдумывать всякую фигню.
Совершенно верно. Аналогии из теории упругости все равно в итоге ограничены. Но мне кажется, что не следует пренебрегать возможностью связать новое с хорошо известным, даже и в частном случае.
Это что за "разрывная деформация"?
Например, рассмотрим пластину. Вы же понимаете, что если в каждой точке пластины произвольно и независимо определить линейную деформацию, то каждый квадратик этой пластины превратится в произвольный параллелограмм. После такой деформации пластина будет разорвана в каждой точке, т.к. эти параллелограммы не складываются друг с другом. Их деформация была задана произвольно и не была согласована. Даже если все компоненты тензора деформации гладко зависят от координат.
Однако эти же параллелограммы можно сложить друг с другом без зазоров в искривленную пластину. Здесь я не могу точно судить о том, всегда ли это возможно при произвольном гладком тензоре деформации, но по крайней мере существует широкий класс таких деформаций, результат которых можно сложить в
какую-нибудь искривленную поверхность. Этот класс ограничен некоторым условием на тензор деформации, который я тут называю условием связности (т.е. возможность сохранить непрерывность плоской пластины после деформации ценой ее искривления). В этом смысле искривленное пространство задается разрывной деформацией плоского пространства. И не обязательно плоского, конечно. Вообще любого другого.
Если мы хотим, чтобы пластина и после деформации осталась сплошной и плоской, то на тензор деформации нужно наложить условие неразрывности. А если, например, мы неравномерно нагреваем пластину и она начинает выгибаться, значит мы задали на ней тензор деформации, который не подчиняется условию неразрывности, а только условию связности. Он превращает плоскую поверхность в искривленную. А если она выгнулась и все равно треснула, то значит тензор деформации перестал подчиняться и связности.
Поэтому спор об изначальном плоском пространстве рискует перерасти в драку.
Изначально плоское - это для наглядности, поскольку речь шла о том, как отобразить кривизну пространства деформацией изначально плоской сетки. Разумеется, в общем случае можно представлять, как одно искривленное пространство деформируется в другое. Просто это уже не так наглядно, как появление разрывов при переходе от плоского к искривленному пространству.
Почему вы какие-то свои проблемы (пусть даже прошлые проблемы) приписываете большинству других людей?
Согласен, не нужно мне было так говорить. Мне только кажется, что большинству людей непонятно именно это. Я это сказал не для того, чтобы выгодно выделится на фоне тех, кому приписываю всякие глупости. Я это сказал потому, что трудности в правильном понимании идеи искривленного пространства очевидно широко распространены, так же как и неправильные представления. И я взял на себя смелость предположить, в чем заключается главная трудность, т.е. как именно человек обычно пытается понять эту идею и как лучше всего показать, что этот путь неверный.