Читал я на днях
обзор по так называемой геометрической теории групп, поражался её обширности и красоте. Один из её ключевых результатов
теорема Громова
формулируется следующим образом:
Цитата:
Конечно-порожденная группа виртуально нильпотентна [то есть, имеет нильпотентную подгруппу конечного индекса - мое добав.] тогда и только тогда, когда она
полиномиального роста.
Я попробовал поразбирать доказательство теоремы, пройдясь по ссылкам на обзоре, и заметил, что оно задействует очень широкий спектр тем. Прежде всего, надо знать про фундаментальные группы (замкнутых) римановых многообразий, про топологию графа Кэли группы (которая как метрическое пространство квазиизометрична группе со "словесной" метрикой.), про группы Ли (правда, тут довольно "простой" нильпотентный случай), про асимптоптические конусы на гиперболических пространствах, про собственно группы полиномиального роста и т.д.
Спрашиваю, полагаясь на означенную широту вопроса, надеясь на то, что кто-то из форумчан пересекался или тесно знаком с деталями этих тем вокруг теоремы. Есть ли около всей этой истории сюжеты, которые мог бы осилить любитель, не погружаясь в кроличью нору многочисленных специальных теорий? Это могут быть сюжеты, даже и не приближающие к пониманию собственно теоремы Громова, но просто полезные и интересные в контексте геометрической теории групп, и не такие банальные, как, скажем, нильпотентные группы или азы римановых многообразий (которые входят в стандартные вузовские курсы алгебры и дифференциальной геометрии). Естественно ожидаются ссылки на статьи, разделы книг и прочие прелести.