Мне всегда казалось, что у математики есть нечто, глубоко запрятанное в основаниях, что во многом определяет её дух и букву...
Не будучи профессиональным математиком (по диплому я --- "прикладной математик", но, как Вы понимаете, прилагательное --- враг существительного, к тому же учился я из рук вон плохо и только сейчас пытаюсь что-то наверстать своими закосневшими мозгами), и не разбираясь в мат. логике (я имею в виду теорему Гёделя о неполноте), я смотрю на всё это как бы со стороны. И вот что я вижу.
С одной стороны, есть хорошо развитые и хорошо сложенные теории. Особенно, это касается теорий всевозможных линейных объектов. Но это поиск под фонарём. Самое интересное --- это нелинейное. Но и оно рассматривается как локально линейное. Отсюда проистекает дифференциальное исчисление. Другая противоположность --- мера, которой мы пытаемся описать объекты в целом. Отсюда проистекает интегральное исчисление. Но что такое дифференциальное (интегральное) уравнение. Это --- известное соотношение неизвестных функций. И всё. А графы? Что такое граф? Это --- совокупность объектов и связей между ними. И всё. Простота (и наглядность) определений "окупается" трудностью доказательств важнейших фактов.
С другой стороны есть изложение теорий в учебниках, которое отражает результат развития математики, а не сам процесс получения результата...
Возникает вопрос: то, что мы имеем сегодня --- это закономерный, а потому и единстенный, способ математического познания мира, или существуют принципиально иные подходы к самому построению математики?
Конечно, существует т.н. конструктивный анализ. Но я имею в ви ду сам подход к определению понятий. В философии, кажется, есть понятие лестницы Витгенштейна: мы можем отбросить предшествующий путь, и использовать достигнутое, как исходную точку наших построений. Одна такая попытка нам известна: это --- теория категорий, в рамках которой отношение принадлежности элемента множества --- производное понятие. А если посмотреть шире?
Возьмём теорию дифференциальных уравнений. Мы умеем интегрировать некоторые дифференциальные уравнения. А почему не можем любое? Что нам мешает? Есть приближённые методы. Но нужно точное описание процесса. Так что же такое дифференциальное уравнение? Строго говоря, оно --- это все случаи его применения. Но как описать эти случаи?
Почему до сих пор у нас нет периодической таблицы функций, графов и уравнений? Почему мы до сих пор не знаем толком, что чем управляет?
Ведь, в чём состоит методология математики? Мы хотим решить задачу. Мы понимаем, что саму задачу решить не можем. Мы начинаем решать другую задачу, сужаем класс допустимых объектов, занимаемся поиском необходимых и достаточных условий. Получается, что мы можем решить задачу (в лучшем случае) для всюду плотного, но счётного, множества объектов. Мы что-то можем сказать об "алгебраических" объектах, но "трансцендентные" для нас так и остаются загадкой. Что нам мешает? Наш теоретико-множественный формализм? Или отсутствие формализма? Гильберт мечтал о формализации математики, но этого так и не сделано. Арнольд считает формализацию невозможной, а занятие оной --- вредительством. Но сам смотрит на некоторые загадочные соотношения, как завороженный. Может быть, всё-таки есть что-то, есть какой-то способ универсальной укладки математических объектов, при котором мы будем точно знать, по какому алгоритму можно, пользуясь одним объектом, достучаться до другого объекта?
(Маниловщина, скажите, да? Такое, разумеется может предложить, наверное, только безграмотный математик, которому невмоготу сидеть и решать математические задачи. Вот он и "выдумывает" чудовчищ, а разум спит...)
P.S. Возмём, например, непрерывные функции. Ранее, непрерывными функциями называли как раз те, которые представимы единым аналитическим выражением. То есть: непрерывность --- это единый способ описания. Теперь непрерывность --- это локальное свойство. Для большинства "аналитических" функций непрерывность в современном смысле гарантируется тем, что суперпозиция непрерывных функций оказывается непрерывной... Но если рассматривать хотя бы только степенные функции при любых аргументах и показателях степени, возникают существенные разрывы в стройной картине мира, когда для части показателей и аргументов приходится вводить ограничения, только чтобы не возникало ветвей (призрак многозначности) и функцию можно было бы обратить. Теория логически непротиворечива. Следовательно, она не полна. Не эта ли неполнота описания даже простейших функций (или степенные функции не простейшие?!) есть причина многих трудностей? И какое необходимо внести "противоречие", чтобы картина стала полной?
P.P.S. Вопросов много. Есть ли в них смысл? И есть ли ответы? И для чего эти ответы? ...
|