2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 12:55 
Заслуженный участник
Аватара пользователя


30/01/06
72407
provincialka в сообщении #1407461 писал(а):
После обсуждения отдельно конечного и бесконечного случая на языке $\varepsilon-\delta$ вводится определение на языке окрестностей и показывается, что оно одинаковое в обоих случаях.

...где под окрестностями понимается что? Вряд ли здесь подразумевается "открытое (в топологическом смысле) множество, содержащее точку".

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 15:09 


17/07/19

55
Нашел любопытную теорему у Кудрявцева о пределе композиции 2-ух функций.
Цитата:
Теорема 6. Пусть $f:X\to\mathbb{R}, g:Y\to\mathbb{R}, f(X) \subset Y$ и существуют конечные или бесконечные пределы $$\lim\limits_{x\to x_0}^{} f(x) = y_0$$ $$\lim\limits_{y\to y_0}^{}g(y)$$ тогда при $x\to x_0$ существует и предел (конечный или бесконечный) сложной функции $g[f(x)]$, причем $$\lim\limits_{x\to x_0}^{}g[f(x)]=\lim\limits_{y\to y_0}^{}g(y)$$

Если понимать предел в терминах проколотых окрестностей, то эта теорема, вообще говоря, неверна. Теорема станет верной если, например, потребовать непрерывность функции $g$ в точке $y_0$. Так же можно потребовать, например, чтобы существовала проколотая окрестность точки $x_0$ такая что функция $f$ на пересечении ее области определения и этой проколотой окрестности не будет принимать значение, равное ее пределу (т.е. $y_0$ в обозначениях Кудрявцева). Это будет, очевидно, выполняться если предел функции $f$ будет равен $\pm\infty$.
Было бы интересно посмотреть на студента, который бы доказывал своему преподавателю, что предел композиции 2-ух функций равен пределу "внешней" функции и ссылался бы на учебник Кудрявцева :-)

P.S. То, что теорема верна в терминологии Кудрявцева, я в курсе.

 Профиль  
                  
 
 Posted automatically
Сообщение28.07.2019, 16:00 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Вопросы преподавания» в форум «Карантин»
В подобной ситуации нет никаких причин цитировать книги в виде скриншота. Наберите текст и формулы в последнем сообщении нормально (краткие инструкции: «Краткий FAQ по тегу [math]» и видеоролик Как записывать формулы).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение28.07.2019, 16:23 


20/03/14
12041
 i  Тема перемещена из форума «Карантин» в форум «Вопросы преподавания»

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение28.07.2019, 18:32 
Заслуженный участник
Аватара пользователя


18/01/13
12044
Казань
Munin в сообщении #1407464 писал(а):
...где под окрестностями понимается что? Вряд ли здесь подразумевается "открытое (в топологическом смысле) множество, содержащее точку".


Ну, конечно, в первом семестре первого курса это было бы слишком сложно. Под окрестностью понимается просто интервал (для бесконечности, возможно, два интервала)

Пробовала я как-то дать студентам топологическое определение функции, непрерывной на множестве (что прообраз открытого открыт). Провал был полный, не поняли свершенно (тут у нас не МГУ и даже не мехмат...)

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение29.07.2019, 19:00 
Аватара пользователя


17/04/11
658
Ukraine
provincialka в сообщении #1407483 писал(а):
Ну, конечно, в первом семестре первого курса это было бы слишком сложно. Под окрестностью понимается просто интервал (для бесконечности, возможно, два интервала)

Открытые интервалы с центром в $a$ — это ещё не все окрестности точки $a$. Это база системы окрестностей. И мне кажется, инициатор темы говорит о базе системы окрестностей бесконечности, а не о системе окрестностей бесконечности.

Если уж мы заговорили о базах систем окрестностей, то до баз фильтров там рукой подать. База системы окрестностей любой точки есть собственная база фильтра. Предел функции в $a$ есть предел образа по $f$ базы системы окрестностей $a$. Точка $a$ является пределом базы фильтра $B$ тогда и только тогда, когда база системы окрестностей $a$ грубее $B$. Функция $f$ непрерывна в $a$ тогда и только тогда, когда $f(a)$ есть предел $f$ в $a$. Подставьте в эти рассуждения определение базы фильтра, образа базы фильтра, отношения «грубее-тоньше», и получите обычные рассуждения в стиле $\varepsilon$-$\delta$. Базы систем окрестностей должны быть понятнее, чем топология.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение29.07.2019, 20:11 
Заслуженный участник
Аватара пользователя


20/08/14
8077
beroal в сообщении #1407689 писал(а):
Открытые интервалы с центром в $a$ — это ещё не все окрестности точки $a$.
Верно. Но во всех теоремах матанализа "найдётся такая окрестность, что..." можно заменить на "найдётся сколь угодно малая такая окрестность, что...", а поэтому под окрестностью достаточно понимать интервал (в многомерном случае открытый шар).

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение29.07.2019, 21:56 


17/07/19

55
beroal
beroal в сообщении #1407689 писал(а):
И мне кажется, инициатор темы говорит о базе системы окрестностей бесконечности, а не о системе окрестностей бесконечности.

Нет, я говорю о системе окрестностей бесконечно удаленных точке $\pm\infty$. Я имел в виду ровно то, о чем говорила provincialka.
provincialka в сообщении #1407461 писал(а):
После обсуждения отдельно конечного и бесконечного случая на языке $\varepsilon-\delta$ вводится определение на языке окрестностей и показывается, что оно одинаковое в обоих случаях.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение30.07.2019, 11:21 
Аватара пользователя


17/04/11
658
Ukraine
Nickname1101 в сообщении #1407754 писал(а):
Нет, я говорю о системе окрестностей бесконечно удаленных точке $\pm\infty$. Я имел в виду ровно то, о чем говорила provincialka.

Чтобы уже не было неясностей, можете описать ваши системы окрестностей на языке теории множеств?
  • Система окрестностей $\infty$, если эти окрестности в $\mathbb{N}$.
  • Система окрестностей $\infty$, если эти окрестности в $\mathbb{R}$.
  • Система окрестностей $-\infty$, если эти окрестности в $\mathbb{R}$.


-- Tue Jul 30, 2019 11:25:05 --

Anton_Peplov в сообщении #1407712 писал(а):
"найдётся такая окрестность, что..." можно заменить на "найдётся сколь угодно малая такая окрестность, что...",

По-моему, «сколь угодно малая» — это неформальное условие. :wink:

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение30.07.2019, 12:53 


17/07/19

55
beroal
beroal в сообщении #1407816 писал(а):
Система окрестностей $\infty$, если эти окрестности в $\mathbb{N}$
На том уровне рассмотрения теории пределов, который я предлагаю, окрестности в $\mathbb{N}$ не нужны. Мы знаем, что $\mathbb{N}\subset\mathbb{R}$ (с оговорками, что в $\mathbb{R}$, какую бы модель мы бы ни взяли, содержится, конечно же, не само множество $\mathbb{N}$, а некоторое изоморфное ему множество; именно его и будем далее называть $\mathbb{N}$). Я предлагаю не выделять $\mathbb{N}$ как то отдельно среди всех $X\subset \mathbb{R}$.

Далее следует сделать оговорку про $\infty$; $+\infty$ и $-\infty$. Я считаю, что мы либо добавляем одну "бесконечность" без знака, либо 2 со знаком, но не все три сразу. Наибольшую ценность, на мой взгляд, представляет вариант с 2-мя "бесконечностями" со знаками. Поэтому, когда я предлагал
Nickname1101 в сообщении #1407358 писал(а):
Затем сведем 9 вариантов предела к одному определению.
я написал именно 9, а не 16.
beroal в сообщении #1407816 писал(а):
Система окрестностей $-\infty$, если эти окрестности в $\mathbb{R}$.
Обычное стандартное определение $U_\varepsilon(-\infty) := \{x\in\mathbb{R}|x < -1/\varepsilon\}$. Это определение удобно тем, что при уменьшении $\varepsilon$ уменьшается окрестность точки $-\infty$. С $+\infty$ аналогично.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение30.07.2019, 13:50 
Аватара пользователя


17/04/11
658
Ukraine
Nickname1101 в сообщении #1407841 писал(а):
Система окрестностей $-\infty$, если эти окрестности в $\mathbb{R}$. Обычное стандартное определение $U_\varepsilon(-\infty) := \{x\in\mathbb{R}|x < -1/\varepsilon\}$. Это определение удобно тем, что при уменьшении $\varepsilon$ уменьшается окрестность точки $-\infty$. С $+\infty$ аналогично.

То есть ваша система окрестностей равна $\{U_\varepsilon(-\infty)\mid \varepsilon\in \mathbb{R}; \varepsilon>0\}$. Дело в том, что определение системы окрестностей есть набор условий, и одно из этих условий говорит (рассматривая систему окрестностей точки $a$): «Для любых подмножеств $U, V$ множества $X$, если $U\subseteq V$ и $U$ есть окрестность $a$, тогда $V$ есть окрестность $a$». Подставьте $\mathbb{R}$ вместо $X$ в это условие, и увидите, что ваша система окрестностей ему не удовлетворяет. Зато она удовлетворяет условиям базы системы окрестностей. Просто такова терминология.

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение30.07.2019, 14:16 


17/07/19

55
beroal
Что-то Вы меня совсем запутали :-). Дайте пожалуйста определение "системы окрестностей". Я под словом "система" понимал просто синоним слов "система множеств". Но если вы про топологию и про фундаментальную систему окрестностей...

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение30.07.2019, 16:03 
Аватара пользователя


17/04/11
658
Ukraine
Nickname1101 в сообщении #1407868 писал(а):
beroal
Что-то Вы меня совсем запутали :-). Дайте пожалуйста определение "системы окрестностей".

Семейство систем окрестностей $\bar{u}$ на $X$ — это семейство множеств множеств элементов $X$, индексированное множеством $X$, такое, что
  • для любой $x\in X$ и любой $U\in \bar{u}(x)$, $x\in U$;
  • для любой $x\in X$ и любых $U, U'\in \bar{u}(x)$ существует такая $V\in \bar{u}(x)$, что $V\subseteq U$ и $V\subseteq U'$;
  • для любой $x\in X$ существует $U\in \bar{u}(x)$;
  • для любой $x\in X$ и любой $U\in \bar{u}(x)$ существует такая $V\in \bar{u}(x)$, что $U\in \bar{u}(y)$ для каждой $y\in V$;
  • для любой $x\in X$ и любых таких $U, V\subseteq X$, что $U\subseteq V$ и $U\in \bar{u}(x)$, $V\in \bar{u}(x)$.

Nickname1101 в сообщении #1407868 писал(а):
Но если вы про топологию

Да, это характеризация топологии через систему окрестностей, могут также называть это «пространство окрестностей».

Nickname1101 в сообщении #1407868 писал(а):
Я под словом "система" понимал просто синоним слов "система множеств".

Ну, если так, то вы правы, у вас система окрестностей. :-)

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение30.07.2019, 16:08 


17/07/19

55
beroal
Можно еще один вопрос? :-) Дайте пожалуйста определение окрестности (в частности, окрестности точки в $\mathbb{R}$).

 Профиль  
                  
 
 Re: Структура раздела "Теория пределов" в курсе матанализа
Сообщение30.07.2019, 16:25 
Аватара пользователя


17/04/11
658
Ukraine
Nickname1101 в сообщении #1407893 писал(а):
beroal
Можно еще один вопрос? :-) Дайте пожалуйста определение окрестности (в частности, окрестности точки в $\mathbb{R}$).

Так называют элементы множества $\bar{u}(x)$. :-)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 74 ]  На страницу Пред.  1, 2, 3, 4, 5  След.

Модераторы: Модераторы, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: DimaM


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group