2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5  След.
 
 Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 00:48 
Заслуженный участник


31/12/15

895
Пытаюсь придумать удобную аксиоматику эллиптического пространства. Что это такое? Возьмём множество кватернионов нормы единица. Это трёхмерная единичная сфера в четырёхмерном пространстве кватернионов. Кроме того, она является группой по умножению. Отождествим кватернионы, отличающиеся умножением на минус единицу (факторизуем группу по $\{1,-1\}$). Получается трёхмерное проективное пространство, на нём задана метрика и структура группы, это и есть эллиптическое пространство.

-- 12.07.2019, 01:04 --

Теперь некоторые вспомогательные сведения. Пусть дана некоторая группа $G$. Мы можем "сменить в ней единичный элемент". А именно, возьмём произвольный элемент $b\in G$ и определим новые умножение и взятие обратного элемента

$a\cdot c=ab^{-1}c$

$\bar{a}=ba^{-1}b$

Предлагается проверить, что получается опять группа, изоморфная исходной, причём $b$ будет в ней единичным элементом. Изоморфизм из исходной группы в новую задаётся умножением на $b$ слева или справа (это разные изоморфизмы). Определим аксиоматически "группу, в которой неважно, какой элемент считать единичным". Множество с заданной трёхместной операцией $(abc)$ называется грудой, если выполнены аксиомы

$((abc)de)=(ab(cde))$

$(abb)=a$

$(aab)=b$

По данной группе $G$ можно определить груду, положив

$(abc)=ab^{-1}c$

Выбрав в груде произвольный элемент $b$ в качестве единичного, получаем группу с операциями

$a c=(abc)$

$a^{-1}=(bab)$

все эти группы изоморфны между собой.

-- 12.07.2019, 01:27 --

Естественная ситуация, в которой возникают груды - это торсоры. Торсор - это множество $X$, на котором действует группа $G$ просто транзитивно. Это значит, что для любых двух точек $x,y\in X$ есть ровно один элемент $g\in G$, переводящий $x$ в $y$

$g(x)=y$

Например, так действует группа параллельных переносов.
Другой важный пример - когда группа $G$ действует сама на себе левым умножением: элемент $x\in G$ под действием $g\in G$ переходит в $gx\in G$.
Третий важный пример - когда группа $G$ действует сама на себе правым умножением: элемент $x\in G$ под действием $g\in G$ переходит в $xg^{-1}\in G$.
Возьмём торсор. Например, плоскость, на которой действует группа параллельных переносов. Выберем произвольную точку $B$ плоскости (множества $X$) и получим взаимно однозначное соответствие между точками $X$ и элементами $G$ (каждой точке $A$ соответствует вектор $BA$). Изоморфизм зависит от выбора точки $B$. Это можно исправить, если вместо группы взять груду. Возьмём три точки $A,B,C$ и сопоставим им точку $D=(ABC)$, образующую с ними параллелограмм (это результат действия переноса $BA$ на точку $C$). Наша плоскость (множество $X$) превратилась в груду. В данном случае группа коммутативная, что выражается равенством

$(ABC)=(CBA)$

поэтому операцию равносильно определяем как результат действия $BC$ на точку $A$, но для произвольных групп левые переносы (умножение слева на элемент группы) не совпадают с правыми. На произвольной группе действуют просто транзитивно группа левых переносов и группа правых переносов, любой левый перенос коммутирует с любым правым, поскольку в группе есть ассоциативность

$(ab)c=a(bc)$

(умножение слева на $a$ коммутирует с умножением справа на $c$)

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 02:54 
Заслуженный участник


31/12/15

895
Ещё немножко про кватернионы. Два кватерниона нормы единица коммутируют $ac=ca$ если и только если $a,1,c$ лежат на одной большой окружности трёхмерной сферы (в одном 2-мерном подпространстве 4-мерного пространства кватернионов). Например, таковы кватернионы $i,1,(i+1)/\sqrt{2}$
Обобщение: кватернионы нормы единица $a,b,c$ лежат на одной большой окружности если и только если

$ab^{-1}c=cb^{-1}a$

Введём операцию груды

$(abc)=ab^{-1}c$

При факторизации по $\{1,-1\}$ большие окружности становятся прямыми в проективном пространстве. Соответственно, для трёх точек $a,b,c$ лежащих на одной прямой, верно

$ab^{-1}c=cb^{-1}a$

Более того, точка $ab^{-1}c$ лежит на той же прямой и представляет собой "сумму векторов $ba$ и $bc$, если точку $b$ выбрать за нулевую", груда на прямой получается коммутативной.

Через некоторое время продолжу.

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 03:29 
Заслуженный участник
Аватара пользователя


22/01/11
2504
СПб
такой некоммутативный аналог аффинности?

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 04:02 
Заслуженный участник


31/12/15

895
alcoholist в сообщении #1404671 писал(а):
такой некоммутативный аналог аффинности?

Да. Там есть интересный аналог параллельности (параллелизм Клиффорда). Если сдвинуть прямую левым сдвигом, получается "левая параллель", если правым - "правая параллель". Через каждую точку проходит одна левая параллель и одна правая к данной прямой, они обычно разные, но в некоторых особых точках могут совпадать.

-- 12.07.2019, 04:18 --

Множество кватернионов $\{x\mid xx=1\}$ состоит всего из двух кватернионов $\{1,-1\}$. Совсем другое дело множество

$\{x\mid xx=-1\}$

это множество всех чисто мнимых кватернионов нормы единица. В трёхмерной сфере они образуют двухмерную сферу с центром в точке $1$ (или $-1$, как на сфере у экватора два полюса, так и тут два). При переходе к проективному пространству (факторизации по $\{1,-1\}$) получаем плоскость (проективную) чисто мнимых кватернионов, определяемую так

$\{x\mid  xx=1\wedge x\neq 1\}$

Аналогично, для любой точки $b$ определяем её "полярную плоскость" так

$\{x\mid xb^{-1}x=b\wedge x\neq b\}$

Это множество точек, лежащих от $b$ на максимальном расстоянии в "полпространства". Проективное пространство топологически устроено как шар с отождествлёнными диаметрально противоположными точками сферы, каждой точке "центру" или "полюсу" соответствует его полярная плоскость (сфера с отождествлёнными диаметрально противоположными точками, плоскость проективная).

-- 12.07.2019, 04:28 --

Рассмотрим теперь повороты. Поворот трёхмерной сферы, сохраняющий на месте точку $1$, выглядит так

$x\to axa^{-1}$

где кватернион $a$ нормы единица и лежит на оси поворота. Это поворот двухмерной сферы чисто мнимых кватернионов нормы единица вокруг центра (точки $1$). Ось поворота - это большая окружность, проходящая через $1$ и $a$ (в эллиптическом пространстве просто прямая). Все точки этой прямой при повороте остаются на месте, потому что коммутируют с $a$.

$axa^{-1}=xaa^{-1}=x$

если $x$ коммутирует с $a$.

Аналогично, поворот, сохраняющий на месте точку $b$, выглядит так (через операцию груды)

$x\to (abxb(bab))$

или, в группе, после сокращений

$x\to ab^{-1}xa^{-1}b$

Через некоторое время продолжу.

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 05:43 
Заслуженный участник


31/12/15

895
Сообразил, что запись

$x\to (abxb(bab))$

не совсем корректная. Будем считать, что в записи вида $(abcde)$ группировка влево. На самом деле из аксиом груд выводятся такие равенства

$((abc)de)=(a(dcb)e)=(ab(cde))$

поэтому совсем убирать внутренние скобки опасно.

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 18:44 
Заслуженный участник


31/12/15

895
Теперь собственно аксиоматика. В книге Бахмана "Построение геометрии на основе понятия симметрии"

http://gen.lib.rus.ec/search.php?req=%D ... column=def

предлагается такая система аксиом. Есть трёхмерное проективное пространство, на котором задана структура группы (есть умножение точек, выделена точка - единица группы). Рассмотрим множество точек

$J=\{x\mid xx=1\wedge x\neq 1\}$

(это плоскость мнимых кватернионов). Рассмотрим всевозможные левые сдвиги этой плоскости (множества вида $bJ$, где $b$ произвольный элемент группы). Аксиоматика утверждает, что все эти множества являются плоскостями и каждая плоскость имеет такой вид. Всё.
Что неприятно в этой аксиоматике? Наличие выделенной точки $1$ (в эллиптическом пространстве никаких выделенных точек нет, оно однородно). Поэтому перейдём от группы к груде. Предлагаю такую аксиоматику: дано трёхмерное проективное пространство, на котором задана структура груды (задана трёхместная операция на точках). Всякое множество вида

$\{x\mid (xbx)=b\wedge x\neq b\}$

является плоскостью и всякая плоскость имеет такой вид для некоторого $b$ (на самом деле единственного, что можно доказать).
Прямую, проходящую через точки $a,b$ можно задать так

$\{x\mid ax^{-1}b=bx^{-1}a\}$

(в книжке Бахмана этого нет, я сам придумал). Это множество неподвижных точек поворота

$x\to ab^{-1}xa^{-1}b$

Тут надо учесть особый случай - в эллиптическом пространстве поворот на 180 градусов имеет некоторые дополнительные неподвижные точки, кроме точек оси (потом придумаю формулу на этот случай).

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 19:02 
Заслуженный участник
Аватара пользователя


30/01/06
72408
Интересно, это всё где-нибудь публикабельно? В смысле, по тематике.

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 19:23 
Заслуженный участник


31/12/15

895
Munin в сообщении #1404792 писал(а):
Интересно, это всё где-нибудь публикабельно? В смысле, по тематике.

Не знаю, геометрические статьи я не пробовал публиковать. Собственно, хочу написать (и частично написал) программу для интерактивных геометрических построений. Геометрию выбрал эллиптическую, она проще, а картинки красивее.

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 20:52 
Заслуженный участник
Аватара пользователя


15/10/08
10023
george66 в сообщении #1404662 писал(а):
Отождествим кватернионы, отличающиеся умножением на минус единицу
А если этого не сделать все рассыплется?

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение12.07.2019, 20:56 
Заслуженный участник


31/12/15

895
Есть маленькая надежда упростить дальше. Если рассмотреть параллельные переносы на плоскости, там можно операцию груды выразить через две двухместные операции. А именно, возьмём операцию отражения точки $A$ относительно точки $B$ (на языке груды это будет $(BAB)$) и операцию взятия середины отрезка (можно обозначить $(A+B)/2$, через операцию груды не выражается). Тогда по трём точкам $A,B,C$ можно построить четвёртую точку параллелограмма: берём середину отрезка $(A+C)/2$ и отражаем относительно неё точку $B$. В эллиптическом пространстве тоже можно брать середины отрезков, но трюк не проходит, поскольку точки $A,B,C,(ABC)$ вообще не лежат в одной плоскости (если только $A,B,C$ не лежат на одной прямой).

-- 12.07.2019, 20:59 --

Утундрий в сообщении #1404808 писал(а):
george66 в сообщении #1404662 писал(а):
Отождествим кватернионы, отличающиеся умножением на минус единицу
А если этого не сделать все рассыплется?

Содержательно, различие плюса и минуса связано с операцией сложения, а у нас её нет, только умножение.

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение13.07.2019, 00:42 
Заслуженный участник
Аватара пользователя


27/04/09
27532
george66 в сообщении #1404674 писал(а):
поэтому совсем убирать внутренние скобки опасно
Просто надо помнить, что в скобке операнды на нечётных местах — «с плюсом», а на чётных «с минусом», и аналог ассоциативности как раз позволяет не бояться убрать внутренние скобки, если расставлять их потом назад, помня «типизацию».

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение13.07.2019, 14:43 
Заслуженный участник
Аватара пользователя


27/04/09
27532
george66 в сообщении #1404674 писал(а):
На самом деле из аксиом груд выводятся такие равенства

$((abc)de)=(a(dcb)e)=(ab(cde))$
Кстати вы равенство крайних выражений среднему забыли включить в аксиомы там в первом посте. :-)

Кстати а размерность у этого пространства никак не понижается? Чтобы посмотреть на аналоги явлений глазом.

george66 в сообщении #1404672 писал(а):
Аналогично, поворот, сохраняющий на месте точку $b$, выглядит так (через операцию груды)

$x\to (abxb(bab))$

или, в группе, после сокращений

$x\to ab^{-1}xa^{-1}b$
То есть $(abxab)$, к чему можно привести и не выходя из груды параассоциативностью: $(abxbbab) = (abx(abb)b) = (abxab)$.

-- Сб июл 13, 2019 16:47:33 --

george66 в сообщении #1404786 писал(а):
Предлагаю такую аксиоматику: дано трёхмерное проективное пространство, на котором задана структура груды (задана трёхместная операция на точках). Всякое множество вида

$\{x\mid (xbx)=b\wedge x\neq b\}$

является плоскостью и всякая плоскость имеет такой вид для некоторого $b$ (на самом деле единственного, что можно доказать).
Прямую, проходящую через точки $a,b$ можно задать так

$\{x\mid ax^{-1}b=bx^{-1}a\}$
С учётом того, что вы выше заметили, да, это выглядит хорошо! :-)

-- Сб июл 13, 2019 16:48:57 --

А, чего это я про низкомерную аналогию: вот наверно взять любую плоскость и ограничиться ей. Подумаю. Я бы хотел это оклиффордовать, если лени не будет.

-- Сб июл 13, 2019 16:53:46 --

А есть ли какие-то связи с обычным трёхмерным проективным пространством?

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение13.07.2019, 15:56 
Заслуженный участник


31/12/15

895
arseniiv в сообщении #1404895 писал(а):
george66 в сообщении #1404674 писал(а):
На самом деле из аксиом груд выводятся такие равенства

$((abc)de)=(a(dcb)e)=(ab(cde))$
Кстати вы равенство крайних выражений среднему забыли включить в аксиомы там в первом посте. :-)

Выводится (проверял). Обычно включают в число аксиом, но не всегда.

-- 13.07.2019, 16:00 --

arseniiv в сообщении #1404895 писал(а):
А есть ли какие-то связи с обычным трёхмерным проективным пространством?


В книжке Бахмана очень изящно выводится теорема Паппа с помощью параллелей Клиффорда (стр.301-305).

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение13.07.2019, 16:03 
Заслуженный участник
Аватара пользователя


27/04/09
27532
george66 в сообщении #1404898 писал(а):
Выводится (проверял). Обычно включают в число аксиом, но не всегда.
И в некоммутативном случае? Но как? :o

-- Сб июл 13, 2019 18:05:45 --

Хотя и в коммутативном тоже по идее никак, это я не ту вещь подумал.

-- Сб июл 13, 2019 18:59:17 --

Да, я неправ, это выводится через не очень много шагов через например «огруппление», для которого то дополнительное равенство нигде не нужно. Если мы оба не ошиблись в одном и том же месте, что надеюсь маловероятно.

(А именно)

Если вывести кроме аксиом группы ещё $(x * y)^{-1} = y^{-1} * x^{-1}$ и $(x^{-1})^{-1} = x$ (тут пригодится сокращение: если $(xyz) = (x'yz)$, то через подстановку $w\mapsto(wzy)$ получаем $x = x'$), и наконец что $(xyz) = x * y^{-1} * z$, то мы можем наконец-таки переставить скобки как надо.

Можно ли такое доказательство как-то сжать, кстати? Не думал. Если можно, было бы немного внезапно!

Это тут оффтоп, конечно, так что запрятал.

 Профиль  
                  
 
 Re: Группы, груды и аксиоматика эллиптического пространства
Сообщение13.07.2019, 17:25 
Заслуженный участник


31/12/15

895
arseniiv в сообщении #1404900 писал(а):

Можно ли такое доказательство как-то сжать, кстати? Не думал. Если можно, было бы немного внезапно!

Я выводил и сжимал, но прямо сейчас не хочу.

Я пытался в обратную сторону делать: начинаем с проективного пространства, в котором верна аксиома Паппа и задан поляритет (взаимно однозначное соответствие точек и плоскостей, сохраняющее инцидентность). Поляритет должен быть эллиптическим (никакая точка не лежит на своей полярной плоскости). Можно ли определить умножение точек (или сдвиги, или параллели Клиффорда)? Кажется, можно, но адски сложно.

-- 13.07.2019, 17:29 --

arseniiv в сообщении #1404895 писал(а):
Кстати а размерность у этого пространства никак не понижается? Чтобы посмотреть на аналоги явлений глазом.

Аналоги меньшей размерности только коммутативные (обычные аффинные плоскость и прямая, окружность с группой поворотов). Плоскости в эллиптическом пространстве не замкнуты относительно операции $(abc)$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 68 ]  На страницу 1, 2, 3, 4, 5  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Someone


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group