optimistГраничные условия на
:
Из
следует, что
Переписал заново все преобразования. Подскажите, где ошибка?
Код:
In[1]:= ClearAll["Global`*"] - очистить все
f1[x, y] = k*y^4/(12 b^2) + (y^2 - b^2/4)^2 f[x]
D[f1[x, y], x, x]
Out[1]= -все очистить + Null
Out[2]= (k y^4)/(12 b^2) + (-(b^2/4) + y^2)^2 f[x]
(-(b^2/4) + y^2)^2 (f^\[Prime]\[Prime])[x]
In[4]:= D[f1[x, y], x, y]
In[5]:= 4 y (-(b^2/4) + y^2) Derivative[1][f][x]
D[f1[x, y], y, y]
Out[5]= 4 y (-(b^2/4) + y^2) Derivative[1][f][x]
(k y^2)/b^2 + 8 y^2 f[x] + 4 (-(b^2/4) + y^2) f[x]
functional =
1/(2 e) (((k y^2)/b^2 + 8 y^2 f[x] +
4 (-(b^2/4) + y^2) f[x])^2 + ((-(b^2/4) + y^2)^2 (
f^\[Prime]\[Prime])[x])^2) -
2 nu ((-(b^2/4) + y^2)^2 (f^\[Prime]\[Prime])[x])*((k y^2)/b^2 +
8 y^2 f[x] + 4 (-(b^2/4) + y^2) f[x]) +
1/(2 g) (4 y (-(b^2/4) + y^2) Derivative[1][f][x])^2
phi = Integrate[functional, {y, -b/2, b/2}]
Out[7]= (k y^2)/b^2 + 8 y^2 f[x] + 4 (-(b^2/4) + y^2) f[x]
Out[8]= (8 y^2 (-(b^2/4) + y^2)^2 Derivative[1][f][x]^2)/g -
2 nu (-(b^2/4) + y^2)^2 ((k y^2)/b^2 + 8 y^2 f[x] +
4 (-(b^2/4) + y^2) f[x]) (f^\[Prime]\[Prime])[
x] + (((k y^2)/b^2 + 8 y^2 f[x] +
4 (-(b^2/4) + y^2) f[x])^2 + (-(b^2/4) + y^2)^4 (
f^\[Prime]\[Prime])[x]^2)/(2 e)
(b k^2)/(160 e) + (b^3 k f[x])/(15 e) + (2 b^5 f[x]^2)/(5 e) + (
b^7 Derivative[1][f][x]^2)/(105 g) -
1/420 b^5 k nu (f^\[Prime]\[Prime])[x] +
4/105 b^7 nu f[x] (f^\[Prime]\[Prime])[x] + (
b^9 (f^\[Prime]\[Prime])[x]^2)/(1260 e)
In[10]:= D[phi, f[x]]
In[11]:= (b^3 k)/(15 e) + (4 b^5 f[x])/(5 e) +
4/105 b^7 nu (f^\[Prime]\[Prime])[x]
D[phi, f'[x], x]
Out[11]= (b^3 k)/(15 e) + (4 b^5 f[x])/(5 e) +
4/105 b^7 nu (f^\[Prime]\[Prime])[x]
((2 b^7 (f^\[Prime]\[Prime])[x])/(105 g))
In[13]:= D[phi, f''[x], x, x]
4/105 b^7 nu (f^\[Prime]\[Prime])[x] + (b^9
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(", "4", ")"}],
Derivative],
MultilineFunction->None]\)[x])/(630 e)
Полученный диффур :
In[22]:= (b^3 k)/(15 e) + (4 b^5 f[x])/(5 e) +
4/105 b^7 nu (f^\[Prime]\[Prime])[x] - (
2 b^7 (f^\[Prime]\[Prime])[x])/(105 g) +
4/105 b^7 nu (f^\[Prime]\[Prime])[x] + (b^9
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(", "4", ")"}],
Derivative],
MultilineFunction->None]\)[x])/(630 e)
DSolve[{(b^3 k)/(15 e) + (4 b^5 f[x])/(5 e) +
4/105 b^7 nu (f^\[Prime]\[Prime])[x] - (
2 b^7 (f^\[Prime]\[Prime])[x])/(105 g) +
4/105 b^7 nu (f^\[Prime]\[Prime])[x] + (b^9
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(", "4", ")"}],
Derivative],
MultilineFunction->None]\)[x])/(630 e) == 0, f''[L] == 0, f'[L] == 0},
f[x], x]
Out[22]= (b^3 k)/(15 e) + (4 b^5 f[x])/(5 e) - (
2 b^7 (f^\[Prime]\[Prime])[x])/(105 g) +
8/105 b^7 nu (f^\[Prime]\[Prime])[x] + (b^9
\!\(\*SuperscriptBox[\(f\),
TagBox[
RowBox[{"(", "4", ")"}],
Derivative],
MultilineFunction->None]\)[x])/(630 e)