- это вычислимое число. (т.е. такое, что мы можем указать цепочку правил, описывающую, как нам найти любую цифру после запятой).
Вычислимые (конструктивные) числа определяются иначе. Проблема в том, что вычислимость последовательности цифр, вообще говоря, зависит от системы счисления: эта последовательность может быть вычислимой в одной системе счисления и невычислимой в другой. Число называется конструктивным (вычислимым), если его можно вычислить с любой наперёд заданной точностью. Это немного более слабое условие, чем вычислимость последовательности цифр.
А множество все вычислимых чисел, вроде как, счётно?
С точки зрения классической математики — да. А с точки зрения конструктивной математики множество конструктивных действительных чисел эффективно несчётно.
Наконец, дискуссия коснулась главного. Но как?
"Вы доказали (немножко коряво, поскольку число
осталось без номера), с чем Вас и поздравляю".
Число
, действительно, осталось без номера. Но ведь это число аналогично пределу последовательности. Каков может быть номер числа, являющегося пределом последовательности. Только
.
Глупость. Я написал, что Ваше рассуждение корявое, имеет дефект: Вы претендуете на то, что ваша последовательность содержит все числа из отрезка
, и в результате получаете число, у которого номера нет. Ситуация явно юмористическая. Я бы посмеялся, но уже устал смеяться над подобными глупостями ваших предшественников.
Ещё раз: если Вы хотите доказать, что некоторое множество счётно, Вы должны предъявить последовательность, содержащую
все элементы множества. В данном случае в вашей последовательности отсутствует число
и ещё очень много других чисел — все числа отрезка
, которые не являются двоично рациональными.
Это число и должно было быть центром обсуждения.
Нет. Центром обсуждения должно быть то, что ваша последовательность содержит не все числа отрезка
. Например, она не содержит чисел
(это Вы и сами заметили) и
(это Вам указали другие). В результате заявленное Вами утверждение о счётности множества действительных чисел осталось недоказанным.