Верно. См. книжку Масси-Столлингс, стр. 80. Там для фундаментальной группы, но точно то же рассуждение верно и в высших размерностях. (Собственно, это следует из того, что гомотопическая группа --- функтор из категории пунктированых пространств в категорию групп). Почему в ФФ нет --- бог весть. Относительно "нормального фактора" не вполне понятно, что Вы имеете в виду: фактор --- это же не подгруппа. Верно, однако, что гомотопическая группа ретракта является прямым множителем, поскольку вообще, если есть группа
, ее подгруппа
, и гомоморфизм
, тождественный на
, то
.