2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2  След.
 
 Головоломки со спичками
Сообщение17.12.2018, 11:32 
Аватара пользователя


01/12/11

8634
№1:

Переложите ровно по одной спичке внутри каждой из цифр так, чтобы получился верный пример. Сколько решений имеет эта задача?

Изображение

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение17.12.2018, 11:53 
Аватара пользователя


11/12/16
14044
уездный город Н
Ktina в сообщении #1361872 писал(а):
Сколько решений имеет эта задача?


Одно

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение17.12.2018, 12:00 
Аватара пользователя


01/12/11

8634
EUgeneUS
Почему?

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение17.12.2018, 12:07 


05/09/16
12128
Ktina в сообщении #1361887 писал(а):
Почему?
Ну это ж для 4 класса задачка-то. Так спички легли, что остальные варианты не подходят под условие "ровно по одной спичке внутри каждой" :mrgreen:

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение17.12.2018, 12:08 
Аватара пользователя


11/12/16
14044
уездный город Н
Вот это требование:
Ktina в сообщении #1361872 писал(а):
Переложите ровно по одной спичке внутри каждой из цифр

Говорит, что количество спичек в каждой цифре не меняется. Если считать, что спички нельзя класть друг на друга - это стандартное требование для таких задач, хотя Вы его не озвучили.

тогда $6$, $9$ могут превратиться только в друг друга и в $0$.
а тройка может превратиться в $2$ и $5$
тогда единственный вариант для последнего разряда это $9$, $6$ и $5$

Аналогично ищется единственный вариант для старшего разряда.

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение17.12.2018, 18:51 
Аватара пользователя


15/04/15
1578
Калининград
wrest в сообщении #1361890 писал(а):
Ktina в сообщении #1361887 писал(а):
Почему?
Ну это ж для 4 класса задачка-то. Так спички легли, что остальные варианты не подходят под условие "ровно по одной спичке внутри каждой" :mrgreen:

EUgeneUS в сообщении #1361891 писал(а):
Если считать, что спички нельзя класть друг на друга - это стандартное требование...

EUgeneUS в сообщении #1361891 писал(а):
Вот это требование:
- для тех, кто в армии служил.
А нам можно и посмеяться. Если "переложить" применить в значении "уложить иначе", то каждую спичку можно развернуть зажигательной головкой на 180 градусов и добиться более миллиона (если не ошибаюсь) сочетаний, плюс одно стандартное, плюс два способа с применением миссионерской позы (25+30=55 и 20+35=55).

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 00:29 


05/09/16
12128
PETIKANTROP в сообщении #1361977 писал(а):
то каждую спичку можно

Кажжую нельзя,можно и нужно только одну.

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 07:07 
Аватара пользователя


15/04/15
1578
Калининград
wrest в сообщении #1362077 писал(а):
PETIKANTROP в сообщении #1361977 писал(а):
то каждую спичку можно

Кажжую нельзя,можно и нужно только одну.

Вы все правильно поняли. Чтобы с полуоборота добиться максимального количества решений (сочетаний), каждый раз одну из 5-6 спичек каждой цифры нужно поворачивать на пол-оборота. И можно оглянуться посмотреть, не оглянулась ли она...

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 16:10 
Аватара пользователя


01/12/11

8634
№2:
Изображение

Переложите две спички таким образом, чтобы площадь полученного многоугольника была в полтора раза больше площади этого треугольника.

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 16:29 
Аватара пользователя


11/01/13
292
Невозможно.
Кажется, уже была подобная задачка на этом форуме.

Нашёл. :D

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 16:29 


05/09/16
12128
Ktina в сообщении #1362203 писал(а):
Переложите две спички таким образом, чтобы площадь полученного многоугольника была в полтора раза больше площади этого треугольника.

Площадь правильного шестиугольника изопериметрического правильному треугольнику как раз в полтора раза больше.

Но для перекладывания тут нужны специалисты по миссионерским позам и разворачиванию головок на 180 градусов, видимо.

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 18:48 
Аватара пользователя


15/04/15
1578
Калининград
Heart-Shaped Glasses в сообщении #1362213 писал(а):


В продолжение находок:
arseniiv в сообщении #880313 писал(а):
...В том месте к задаче нет картинки. Можно представить, например, треугольник, каждая из сторон которого имеет длину в одну спичку, просто составляющие её две спички лежат рядом.

Sender в сообщении #880339 писал(а):
Спички могут перекрываться и частично, если уж идти по этому пути.

wrest в сообщении #1362214 писал(а):
для перекладывания тут нужны специалисты по миссионерским позам

Изображение

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 18:57 


05/09/16
12128
PETIKANTROP
Да! все гени...альное просто! :shock:
Но c большим сожалением вынужден вас огорчить: так будет не в полтора раза, а в $\aprox 1,6$ :roll:
Чтобы было в полтора, придется применять еще циркуль и линейку.

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 19:33 
Аватара пользователя


15/04/15
1578
Калининград
Это почему же в 1,6? Я же стянула гени...альную талию прямым углом!

 Профиль  
                  
 
 Re: Головоломки со спичками
Сообщение18.12.2018, 19:37 


05/09/16
12128
PETIKANTROP в сообщении #1362257 писал(а):
Это почему же в 1,6? Я же стянула гени...альную талию прямым углом!

Вот, а надо было немножко туповатым углом стягивать!
$1,6$ раз это я вам примерно сказал. Точное значение, с вашей прямоугольно стянутой талией, будет в $\dfrac{\sqrt{3}}{3}+1$ раз.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 25 ]  На страницу 1, 2  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Cantata


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group